Abs. ED43C-1118 MEETING AGU 100 December 9-13, 2019 San Francisco, CA

1. Space physics has a problem

• In a recent paper, I made this chart •Please notice the variety in the last column

References	Description	Metrics
oberg et al. (2000)	Time delay neural network	RMSE=0.98, R=0.77
akahashi et al (2001)	Kp estimation from one or several individual station values	Single station: R between 0.85 and 0.9; 9 stations: R=0.94
√ing et al (2005)	Feedforward backpropagation and recurrent neural network prediction schemes	R=0.94, Gilbert SS=0.2-0.5 for Kp 2 through 6, depending on year
ala et al (2009) and Bala and Reiff (2012, 014)	Feedforward backpropagation neural network scheme	3-h lead-time: R=0.77, RMSE=0.8, HSS for KP>6=0.964
evos et al. (2014)	Prediction of local K-index from Chambon-la- Forêt	R=0.53, ME~0, MAE=0.3, HSS=0.52
ala Solares et al. (2016)	Kp with NARX, with both a "sliding window" and a "direct approach" for the input values	3-h ahead: RMSE=0.76, R=0.87, PE=0.76; 24-h ahead: RMSE=0.87, R=0.83, PE=0.68
intoft et al. (2017)	Ensemble of time delay neural networks	RMSE=055, R=0.92 (function of year and Kp)
avani et al. (2017)	Kp prediction from predicted solar wind based on a coupling function empirical formula	POD=0.67, FAR=0, TS=0.6, TSS=0.6
aiducek et al. (2017)	Kp prediction from SWMF for all of Jan 2005	RMSE=1.1, ME=0.7

• This column has many different metrics listed •Our community uses a wide range of data-model comparison formulas

I now teach a course at the University of Michigan on data analysis and visualization

•Metrics are a large fraction of the class content!

5. Why lecture you about metrics?

- We have a class at U-M designed for students to explore and learn about data-model comparisons
 - CLIMATE/SPACE 423: Data Analysis and Visualization for Geoscientists

• It's a "zero-to-hero" approach to applied statistics:

- Students first learn about processing a single data set (histograms, mean, ...), then two data sets (x-y pairs, ...)
- Students learn about simple models based on the data (linear regression, polynomial regression, ...) and simple metrics (correlations, chi-squared, ANOVA tables, ...)
- Students then learn about the full suite of metrics described above and the strengths and limitations of each

• It's a zero-to-hero approach to Python usage as well:

- Students are introduced to Jupyter notebooks, using stats packages, opening data sets, and making basic plots
- Students systematically explore Python commands for all of the stats taught in the class sessions
- All examples use geophysical data, from the Earth's interior, oceanography, the atmosphere, the magnetosphere, planets, and the Sun

Work gets progressively more sophisticated

- Homework sets start out very prescriptive, following a set procedure and even being given a template notebook
- They build into more open-ended mini-projects, using given data sets, that meet certain learning goals
- Eventually transition to full-scale projects, including written reports and oral presentations, with choice of data

The Zoo of Metrics: **Teaching a Robust Set of Data-Model Comparison Techniques for Space Physics**

Michael W. Liemohn and Abigail R. Azari

•Occasionally we use another, like prediction efficiency • This is barely scratching the surface of what we can explore and hopefully learn from a comparison of observations and models

6. Uncertainties!

• Ascribing uncertainty – perhaps the biggest lesson students learn

- It is vital to appreciate the relationship of uncertainty to a value
- Critical point: comparing two numbers is meaningless without uncertainties
- Start this lesson on the first day:
 - Deciding how well we "know" a value
 - Measuring something in the classroom with an unusual unit and ascribe an uncertainty to their length estimate
- Build up to quantitative calculations:
 - Section on uncertainty propagation
 - Content on calculating data set variance
 - Equations for fit coefficient uncertainties
 - Discuss uncertainties on data-model comparison metrics formulas
- Two half-days on the bootstrap method
- Data-model comparisons: what is "good?"
- Each metric can usually be compared with a data-set-based value
- For example, RMSE against standard deviation, "good" when RMSE < σ
- Discussed and explored for all metrics
- Students learn to appreciate uncertainty
 - Extensively worked with it throughout the term

A sa	ampling of the
	Python in
In [4]:	<pre># calculate bins sampleSize = len(gaugesRaw) numBins = np.ceil(np.sqrt(sample))</pre>
In [5]:	<pre># calculate mean, median, and m impMean = np.mean(gaugesRaw.loc impMedian = np.median(gaugesRaw impMode = stats.mode(gaugesRaw. print(impMode)</pre>
	ModeResult(mode=array([8.683808
In [6]:	<pre>#set up the figure fig = plt.figure(figsize=(11, 7 fig.suptitle('Histogram of perc</pre>
	<pre>gs = plt.GridSpec(1, 1, hspace=</pre>
	<pre>#add subplots ax1 = fig.add_subplot(gs[0,0])</pre>
	<pre># plot the histogram ax1.hist(gaugesRaw.loc[:, 'MEAN edgecolor="k", linewid</pre>

Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI USA liemohn@umich.edu

3. Categories of metrics

- There are several major categories of metrics, each focused on a certain aspect of the fit. Here are a few of **the major categories**:
- Accuracy: How close is the model to the data?
- **Bias:** What is the discrepancy between the model and the data?
- **Precision:** How similar is the clustering tendency in the model and data? • Association: How well to the model and data values move together? • Extremes: How well can the model get the outliers in the data? • And the subsetting categories, using the above metrics on a portion of either the
- data or model values:
- **Discrimination:** How good is the model for a specific range of the data? • **Reliability:** How close is the data to the model values for a specific range of the model output?
- And a final category, comparing the metric value to a reference model: • Skill: How good is the model at reproducing the data relative to a previous model?
- Another dichotomy is that there are two basic groupings of metrics: • Fit performance metrics: tests the model against the entire data set, usually with a differencing between the model and data values
- Event detection metrics: defining events as values beyond some threshold and determining how well the model identifies observed events, without regard to data-model difference

- applicable to other fields
- In fact, many students are from other departments
- ⁹ Students learn Python
- Accessible and open source
- Jupyter notebooks ease instruction and assignments
- More on Jupyter in this class:
- See Abby Azari's oral presentation tomorrow "Jupiter with Jupyter"
- ED52-06 (11:35 am) in Moscone South Room 216
- Abby's github site for this: https://github.com/astro-
- abby/data_vis_statistics_geosciences **It's all about uncertainty**
- Key concept for comparisons Go to the zoo! (of metrics)