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• In a recent paper, I made this chart
•Please notice the variety in the last column

• This column has many different metrics listed
•Our community uses a wide range of data-model 
comparison formulas

• I now teach a course at the University of Michigan on 
data analysis and visualization
•Metrics are a large fraction of the class content!

1. Space physics has a problem

• Ascribing uncertainty – perhaps the biggest 
lesson students learn
• It is vital to appreciate the relationship of 

uncertainty to a value
• Critical point: comparing two numbers is

meaningless without uncertainties
• Start this lesson on the first day:

• Deciding how well we “know” a value
• Measuring something in the classroom

with an unusual unit and ascribe an 
uncertainty to their length estimate

• Build up to quantitative calculations:
• Section on uncertainty propagation
• Content on calculating data set variance
• Equations for fit coefficient uncertainties
• Discuss uncertainties on data-model 

comparison metrics formulas
• Two half-days on the bootstrap method

• Data-model comparisons: what is “good?”
• Each metric can usually be compared 

with a data-set-based value
• For example, RMSE against standard

deviation, “good” when RMSE < s 
• Discussed and explored for all metrics

• Students learn to appreciate uncertainty
• Extensively worked with it throughout

the term

6. Uncertainties!

• There are many data-model comparison metrics to choose from…

• Space physics papers often only use two:
•Correlation coefficient (R) and root mean square error (RMSE)
•Occasionally we use another, like prediction efficiency

• This is barely scratching the surface of what we can explore and 
hopefully learn from a comparison of observations and models  

2. The zoo of metrics – but we love RMSE!

•We have a class at U-M designed for students to explore and 
learn about data-model comparisons
• CLIMATE/SPACE 423: Data Analysis and Visualization for 

Geoscientists
• It’s a “zero-to-hero” approach to applied statistics:

• Students first learn about processing a single data set 
(histograms, mean, …), then two data sets (x-y pairs, …)
• Students learn about simple models based on the data

(linear regression, polynomial regression, …) and simple
metrics (correlations, chi-squared, ANOVA tables, …)
• Students then learn about the full suite of metrics

described above and the strengths and limitations of each
• It’s a zero-to-hero approach to Python usage as well:

• Students are introduced to Jupyter notebooks, using stats 
packages, opening data sets, and making basic plots
• Students systematically explore Python commands for all 

of the stats taught in the class sessions
• All examples use geophysical data, from the Earth’s 

interior, oceanography, the atmosphere, the 
magnetosphere, planets, and the Sun

•Work gets progressively more sophisticated
• Homework sets start out very prescriptive, following a set

procedure and even being given a template notebook
• They build into more open-ended mini-projects, using 

given data sets, that meet certain learning goals
• Eventually transition to full-scale projects, including 

written reports and oral presentations, with choice of data

5. Why lecture you about metrics?
• This is a fun class to teach
• Students are engaged and 

enthusiastic
• Feeding them the superfood 

of science and engineering
• Skill sets learned are 

applicable to other fields
• In fact, many students are

from other departments
• Students learn Python
•Accessible and open source
• Jupyter notebooks ease 

instruction and assignments
•More on Jupyter in this class:
• See Abby Azari’s oral 

presentation tomorrow
“Jupiter with Jupyter”

• ED52-06 (11:35 am) in
Moscone South Room 216
•Abby’s github site for this:

https://github.com/astro-
abby/data_vis_statistics_geosciences

• It’s all about uncertainty
• Key concept for comparisons

Go to the zoo! (of metrics)

8. Summary

Abs. ED43C-1118

• Every formula in section 2 can be organized into 
one of the categories and groupings
• Each metric reveals something different about

the model’s fit to the data
• RMSE is an accuracy measure, but values 

could be systematically above or below data
• R is an association measure of linearity, but 

values could be very far from the data
•ME (mean error) is a measure of bias but 

doesn’t reveal information about trend, 
clustering, or extremes
• I could go on…

• Even from the three just mentioned, combining 
them reveals new info beyond any one alone:
• R bad, others good: model values jump

above and below the data values
• RMSE bad, others good: model values are 

close to mean value of data
•ME bad, others good: model values have the 

right trend but are offset high/low from data

4. Why use more than two?
• There are several major categories of metrics, each focused on a certain aspect of 

the fit. Here are a few of the major categories:
• Accuracy: How close is the model to the data?
• Bias: What is the discrepancy between the model and the data?
• Precision: How similar is the clustering tendency in the model and data?
• Association: How well to the model and data values move together?
• Extremes: How well can the model get the outliers in the data?
• And the subsetting categories, using the above metrics on a portion of either the 

data or model values:
• Discrimination: How good is the model for a specific range of the data?
• Reliability: How close is the data to the model values for a specific range of the 

model output?
• And a final category, comparing the metric value to a reference model:
• Skill: How good is the model at reproducing the data relative to a previous model?
• Another dichotomy is that there are two basic groupings of metrics:
• Fit performance metrics: tests the model against the entire data set, usually with 

a differencing between the model and data values
• Event detection metrics: defining events as values beyond some threshold and 

determining how well the model identifies observed events, without regard to 
data-model difference

3. Categories of metrics

• A sampling of their final projects

7.  Student work from the class

Pokhrel et al., 2018

December 9-13, 2019 San Francisco, CA

Liemohn et al., SWE, Dec 2018

ROC curves
They even spent a day on GIS 

Scatter plots with line fits

Scatter plots with bootstrap linefits
Histograms of bootstraps

Python in Jupyter Notebooks

Overlaying Histograms

3D Projections

Contingency Table Event Classifications
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