
Martin Lee (2010) 
 
In many of the problems encountered in the heliospheric transport of energetic particles, 
particles are scattered effectively in pitch-angle during timescales of interest. The 
scattering is due to the irregular electromagnetic fluctuations in the plasma that have a 
secular effect on the particle velocity. Under these circumstances the particle distribution 
functions can be assumed to be nearly isotropic, and the appropriate transport equation is 
the energetic particle transport equation first derived by Parker (Planet. Space Sci., 13, 9, 
1965). Applications of this transport equation have had a huge impact on this area of 
research from the solar modulation of galactic cosmic rays, to the transport of solar 
energetic particles and the mechanism of diffusive shock acceleration. It is therefore 
essential for a student of energetic particle transport to gain familiarity with the equation, 
the physics behind it, and illustrative applications of the equation to many of the 
important energetic particle populations in the heliosphere. The problems that follow are 
rather diverse and only ordered by their difficulty with the easiest problems presented 
first. 
 
1. Particle Conservation 
 
Consider the Parker transport equation 
 

 

 
with no source of particles on the right hand side, where the drift velocity 
 

 

 
Show explicitly that the total number of particles in phase-space is conserved as long as 

 and  vanish. It is helpful to write the equation in conservation 
(continuity) form. 
 
 
2. Interplanetary Propagation of Solar Energetic Particles (SEPs) 
 
High-energy particles are accelerated close to the Sun in association with flares and 
coronal mass ejections (CMEs). They occur either as discrete impulsive events or gradual 
events. The former events are thought to be accelerated as a byproduct of magnetic 
reconnection at the flare site, while the latter events are thought to be accelerated at the 
shocks driven by fast CMEs near the Sun. In both cases these particles propagate into 
interplanetary space after their release at the Sun. The particles that arrive first at an 
observing spacecraft propagate nearly scatter-free through the ambient electromagnetic 
fields. However, those that arrive later have been scattered by electromagnetic 
fluctuations, have nearly isotropic velocity distributions, and may be described very 
approximately by the Parker transport equation. 
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The simplest possible model neglects particle drift, advection with the solar wind and 
adiabatic deceleration in the diverging wind. If N particles of a specific momentum 
magnitude  are released impulsively at the Sun with spherical symmetry, they then 
satisfy 

 

 
where we have assumed that the diffusion tensor is isotropic and homogeneous. Find 

. For an observer at heliocentric radius r, at what time is the maximum particle 
intensity observed? 
 
 
3. The Solar Modulation of Galactic Cosmic Rays 
 
Consider a simple model for the solar modulation of galactic cosmic rays, which 
nevertheless includes many of the important features of the process. Take the stationary 
spherically-symmetric Parker transport equation for constant solar wind speed V and 

 (independent of energy) 
 

 

 
where drift transport is neglected. Find 

! 

f (r < r0, p)   subject to the boundary condition 

! 

f (r0, p) = p0"( p # p0) . The solution represents the modulation of a monoenergetic 
population of galactic cosmic rays. A more general energy spectrum of cosmic rays in 
interstellar space may be obtained by convolution. Hint: a more convenient choice of 
independent variables is 

! 

x = ln(r r0)  and 

! 

y = ln( p p0) . Describe the essential features of 
the solution. Find 

! 

pm , the momentum at which f has its maximum value, as a function of 
r. 
 
 
4. A Simple Model for the Production and Evolution of Interstellar Pickup Ions in 
the Solar Wind 
 
Interstellar gas enters the heliosphere under the influence of solar gravity, radiation 
pressure, and ionization losses. The resulting neutral atom density is 

! 

n(r," )  , where r is 
heliocentric radial distance and  is the angle of the heliocentric position vector relative 
to the bulk inflow velocity of the atoms. We may assume that the ionization rate per atom 
is 

! 

"0(r0 r)2.  When an atom is ionized it has a speed approximately equal to the solar 
wind speed V in the frame of the solar wind. We assume that these ions are immediately 
picked up by the solar wind via gyration and pitch-angle scattering to form an isotropic 
shell of speed V in the solar wind frame. 

(a) Assuming	
  that	
  the	
  pitch-­‐angle	
  scattering	
  rate	
  is	
  so	
  large	
  that	
  the	
  spatial	
  
diffusion	
  tensor	
  is	
  negligible,	
  write	
  down	
  the	
  Parker	
  equation	
  for	
  the	
  
evolution	
  of	
  the	
  pickup	
  ion	
  omnidirectional	
  distribution	
  function	
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with	
  an	
  appropriate	
  source	
  term.	
  We	
  assume	
  that	
  the	
  configuration	
  is	
  
stationary	
  and	
  that	
  the	
  solar	
  wind	
  has	
  constant	
  speed	
  and	
  spherical	
  
symmetry.	
  

(b) Solve	
  the	
  Parker	
  equation	
  for	
  

! 

f (r," ,v) .	
  
(c) Approximate	
  

! 

f (r," ,v) 	
  for	
  large	
  r.	
  

Draw a schematic plot of 

! 

f (r," ,v)  versus v. 
 
 
5. Diffusive Acceleration at a Planar Stationary Shock 
 
Consider particle acceleration and transport at a planar stationary shock at x = 0, for 
which the Parker transport equation in the shock frame is 

      (1) 
The upstream fluid flow is 

! 

Vx(x < 0) =Vu > 0   and the downstream fluid flow is 

! 

Vx(x > 0) =Vd > 0 , where both 

! 

Vu   and 

! 

Vd  are constants. The diffusion coefficients are 

! 

K(x < 0) = Ku and 

! 

K(x > 0) = Kd , where 

! 

Ku and 

! 

Kd   are functions only of p. The 
boundary conditions are that  is finite and , where  
represents the ambient population of energetic particles. The objective of this problem is 
to calculate . 

(a) Solve	
  equation	
  (1)	
  separately	
  upstream	
  (x	
  <	
  0)	
  and	
  downstream	
  (x	
  >	
  0)	
  of	
  the	
  
shock.	
  Each	
  solution	
  should	
  involve	
  two	
  undetermined	
  functions	
  of	
  p.	
  	
  

(b) Impose	
  the	
  boundary	
  conditions	
  at	
   	
  and	
   .	
  
(c) Impose	
  the	
  condition	
   	
  at	
  the	
  shock	
  as	
   .	
  Why	
  is	
  this	
  

condition	
  appropriate?	
  
(d) The	
  final	
  undetermined	
  function	
  of	
  p	
  is	
  determined	
  by	
  integrating	
  equation	
  

(1)	
  from	
  	
   	
  to	
   	
  and	
  allowing	
   	
  to	
  approach	
  zero.	
  This	
  “jump	
  
condition”	
  yields	
  a	
  first-­‐order	
  differential	
  equation	
  for	
  the	
  remaining	
  
unknown	
  function.	
  What	
  is	
  the	
  physical	
  meaning	
  of	
  this	
  jump	
  condition?	
  
Solve	
  the	
  differential	
  equation	
  to	
  determine	
  the	
  function.	
  

(e) Write	
  out	
   	
  and	
   	
  explicitly.	
  
(f) Evaluate	
   	
  for	
  the	
  specific	
  case	
   .	
  

In this case write the power-law index in terms of the shock compression ratio 
, where  is the fluid mass density. 

 
 
6. A Simple Example of a Shock Modified by Energetic Particle Pressure 
 
Consider a fluid with mass density , velocity V, and negligible pressure. It transports 
nonrelativistic energetic particles, which are coupled to it by a constant diffusion 
coefficient K. The relevant equations are the hydrodynamic equations for the fluid and 
the Parker equation for the energetic particles (ignoring the magnetic field): 
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,        (1) 

,       (2) 

,     (3) 

 
where P is the energetic particle pressure  

(a) Take	
  the	
  pressure	
  moment	
  of	
   equation	
  (3)	
  to	
  
derive	
  an	
  equation	
  for	
  

! 

P(x, t) .	
  You	
  should	
  get	
  a	
  factor	
  5/3;	
  set	
  γ	
  =	
  5/3.	
  
(b) Now	
  consider	
  a	
  stationary	
  planar	
  system	
  with	
  variations	
  in	
  the	
  x-­‐

direction	
  only.	
  Rewrite	
  equations	
  (1)	
  and	
  (2),	
  and	
  the	
  equation	
  for	
   	
  
derived	
  in	
  (a)	
  specifically	
  for	
  this	
  system.	
  

(c) Find	
  three	
  integrals	
  of	
  the	
  system	
  and	
  identify	
  them	
  as	
  mass	
  flux,	
  
momentum	
  flux	
  and	
  energy	
  flux	
  conservation.	
  Identifying	
  the	
  integral	
  
associated	
  with	
  the	
  P	
  equation	
  is	
  somewhat	
  tricky.	
  Rewrite	
  the	
  factor	
  

	
  appearing	
  in	
  one	
  term	
  as	
  

! 

d dx (PV ) "VdP dx .	
  Then	
  in	
  the	
  terms	
  
involving	
  the	
  derivative	
   	
  use	
  the	
  simplified	
  version	
  of	
  equation	
  (2)	
  
to	
  replace	
   	
  by	
  the	
  term	
  in	
  equation	
  (2)	
  involving	
  V	
  and	
  dV/dx.	
  The	
  
resulting	
  equation	
  may	
  be	
  integrated	
  easily.	
  

(d) Determine	
  the	
  three	
  constants	
  by	
  setting	
  

! 

V =V 0 > 0	
  ,	
  	
  

! 

" = "0	
  and	
   	
  as	
  
.	
  

(e) Derive	
  the	
  following	
  equation	
  for	
  

! 

V (x) 	
  alone	
  by	
  eliminating	
  P	
  in	
  the	
  
energy	
  flux	
  integral:	
  

 
7. Stochastic Acceleration of Particles in a Homogeneous Plasma 
 
Stochastic acceleration of particles is a classical acceleration mechanism. The original 
version of the mechanism, second-order Fermi acceleration, was developed by Fermi to 
account for the acceleration of galactic cosmic rays by “collisions” with interstellar 
“clouds.” Although the original application of the mechanism is no longer viable, 
subsequent versions describe the acceleration of particles by a spectrum of Alfvén waves, 
by a spectrum of magnetosonic waves, by stochastic compressions and expansions in a 
plasma, and by multiple shock waves. The basic mechanism may be understood by 
considering the elastic scattering of particles off a homogeneous isotropic ensemble of 
massive spheres with random velocities V, radius R, and density N.  The appropriate 
transport equation is 
 

 

 
where f is the omnidirectional distribution function, p is momentum magnitude,

, v is particle speed, and  is the scattering mean 
free path. Calculate  if  and the particles are 
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nonrelativistic. It is helpful to choose variables  and , an appropriate 
dimensionless time. Find limiting forms for  for (a)  and P arbitrary and 
(b)  and P finite. 
 
8. Particle Scattering by a Magnetic Irregularity 
 
Consider the motion of a proton in a magnetic field given by 

! 

B = B0
dF
dz
i+ dG

dz
j+k

" 

# 
$ 

% 

& 
'  

where F = F(z) and G = G(z). 
(a) Give	
  the	
  equations	
  for	
   	
  and	
   	
  describing	
  the	
  magnetic	
  field	
  lines.	
  
(b) Write	
  down	
  the	
  three	
  components	
  of	
  the	
  equation	
  of	
  motion,	
  

,	
  involving	
   ,	
   	
  and	
   .	
  
(c) Show	
  explicitly	
  that	
  the	
  proton	
  speed	
  v	
  is	
  a	
  constant.	
  
(d) Integrate	
  and	
  manipulate	
  the	
  equations	
  for	
   	
  and	
   	
  to	
  show	
  that	
  

if	
   	
  and	
   ,	
  where	
   	
  and	
   	
  are	
  all	
  constants,	
  a	
  
proton	
  that	
  traverses	
  the	
  configuration	
  from	
   	
  to	
   encircles	
  the	
  
same	
  field	
  line	
  at	
  	
   	
  as	
  it	
  encircled	
  at	
   .	
  

	
  This	
  means	
  that	
  in	
  this	
  configuration	
  the	
  particle	
  precisely	
  follows	
  the	
  field	
  line.	
  
(e) Now	
  take	
  
	
  

	
  
	
  

	
  
	
  

where	
   .	
  Sketch	
  a	
  field	
  line	
  as	
  carefully	
  as	
  you	
  can.	
  
(f) To	
  zeroth	
  order	
  in	
  ε,	
  the	
  proton	
  trajectory	
  satisfies 	
  and	
  

,	
  where	
   .	
  Integrate	
  
the	
  equation	
  for	
   	
  to	
  calculate	
  to	
  order	
  ε	
  the	
  change	
  in	
  vz,	
   ,	
  as	
  the	
  
proton	
  moves	
  from	
   	
  to	
   .	
  You	
  may	
  wish	
  to	
  integrate	
  by	
  parts.	
  

Interpret your answer. Do you see evidence for the cyclotron resonance condition? What 
determines the sign of  ? 

! 

P = p p
0

! 

"

! 

f (P,")

! 

" <<1

! 

" >>1

! 

x(z)

! 

y(z)

! 

md2r /dt 2 = (e /c)(dr /dt) " B

! 

d2x /dt 2

! 

d2y /dt 2

! 

d2z /dt 2

! 

d2x /dt 2

! 

d2y /dt 2

! 

F(z"±#) = F±

! 

G(z"±#) =G±

! 

F±

! 

G±

! 

z = "#

! 

z = +"

! 

z = +"

! 

z = "#

! 

F(z) = " sin(2#z /L)exp($z2 / l2)

! 

G(z) = " cos(2#z /L)exp($z2 / l2)

! 

" <<1

! 

z = vz0t

! 

v = v"0 sin(#t + $)i + v"0 cos(#t + $)j+ vz0k

! 

" = epB0 /(mpc)

! 

d2z /dt 2

! 

"vz

! 

z"#$

! 

z"+#

! 

"vz

PROBLEM SETS: Heliophysics Textbook II: Chapter 8

Page | 5 of 5




