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Planetary magnetospheres
Problems and Solutions

(Problems: August 2, 2010 Solutions: November 3, 2010 vmv)

1. (Vol. I, 10.3.1) Consider two extreme limits for the shape of a closed magnetosphere:
[1] plane perpendicular to the planet-Sun line (the original version of the Chapman-
Ferraro model), [2] sphere centered on the planet. (Note: [1] can be thought of as
limiting case of a sphere of radius R centered at R − RMP behind the planet with
R→∞.) For both cases:

(a) Calculate the magnetic field everywhere inside the magnetosphere (under the
assumption that interior sources of magnetic field except the planet’s dipole are
negligible, dipole axis is perpendicular to solar wind flow).

(b) What is the ratio of field strength just inside the subsolar magnetopause to the
dipole field there? What is the disturbance field at the planet compared to that
at the subsolar magnetopause?

(c) Show that the magnetic field in the equatorial plane is stronger than the dipole
field everywhere (including the nightside). Show that every field line crossing
the equatorial plane at a particular location reaches the planet at a higher
latitude than the dipole field line from the same location. Can you generalize
these results to less extreme shapes?

(d) The location of the subsolar magnetopause is assumed fixed by pressure balance
with the solar wind. For these special shapes, can pressure balance be satisfied
anywhere else? if yes, where? if not, which way is the imbalance? Use the
Newtonian approximation for the external pressure ρV 2(V̂ · n̂)2.

1. Solution:

(a) The magnetic field inside the magnetosphere can be represented as
a superposition of the field of a dipole at the origin r = 0 plus a dis-
turbance field given by −∇Ψ where the potential Ψ satisfies Laplace’s
equation ∇2Ψ = 0 everywhere inside the magnetosphere (including
r = 0) and obeys the boundary condition n̂ · (−∇Ψ + Bdipole) = 0 at the
magnetopause.
[1]: The magnetopause is a plane perpendicular to the equatorial
plane of the dipole and located a distance RMP sunward. The mag-
netic field is obtained by adding the field of an image dipole of mo-
ment equal to (and aligned with) the magnetic moment µ of the
planet, located an equal distance on the other side of the magne-
topause plane (hence a distance 2RMP sunward of the planet, in the
equatorial plane).
[2] The magnetopause is a sphere centered on the planet, of radius
RMP . The magnetic field is obtained by adding a uniform field B0

antiparallel to the dipole moment (parallel to the dipole field at the
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equator); the boundary condition applied at the pole fixes the magni-
tude B0 = 2µ/(RMP )3. (Can be derived by standard methods of poten-
tial theory, expressing Laplace’s equation in spherical coordinates.)

(b) Dipole field strength just inside the subsolar magnetopause = µ/(RMP )3.
Disturbance field at the subsolar magnetopause = µ/(RMP )3 for [1]
(image dipole at same distance as planet’s dipole), = 2µ/(RMP )3 for
[2]; hence ratio of total field to dipole field =2 for [1], =3 for [2].
Disturbance field at the planet (r = 0) is smaller than at the magne-
topause by a factor 8 for [1] (image dipole twice as far away), the same
as at the magnetopause for [2] (disturbance field uniform throughout
the magnetosphere).

(c) For both [1] and [2], the disturbance field in the equatorial plane is
everywhere in the same direction (ẑ) as the dipole field, hence the
total field is larger than the dipole field alone.
Everywhere within the magnetosphere, the disturbance field is closer
to the ẑ direction than is the dipole field (for [2], this is trivially
obvious; for [1], note that at any point the latitude relative to the
image dipole is lower than the latitude relative to the planet’s dipole).
When a field line of the total magnetic field is traced starting from
a point in the equatorial plane, it is always displaced upward from
where it would be in the dipole field alone.

(d) For [1], everywhere at the magnetopause V̂ · n̂ = 1 and the exter-
nal (solar-wind) pressure is ρV 2. The internal (magnetic) pressure
decreases away from the subsolar point. Pressure balance is thus
satisfied at the subsolar point ONLY; everywhere else the external
pressure is larger than the internal.
For [2], V̂ · n̂ = sin θ cosφ and the external pressure is ρV 2 sin2 θ cos2 φ
(spherical coordinates, θ = 0 at the north pole, φ = 0 at the sunward
direction). The internal pressure at the magnetopause is proportional
to sin2 θ. Pressure balance is satisfied on the entire noon meridian
semicircle; elsewhere on the day side, the internal pressure is larger
than the external. (Note that the Newtonian approximation is not
applicable on the night side, where V̂ · n̂ < 0.)

2. (Vol. I, 10.3.2) Consider a magnetotail cross-section with radius RMT , lobe magnetic
field BMT , and plasma sheet of uniform thickness ZPS � RMT ; assume magnetic
field inside the plasma sheet decreases linearly with z from BMT at z = ZPS to zero
at z = 0; total pressure is constant over the cross-section.

(a) Calculate the total force exerted across the cross-section (in which direction?),
identifying explicitly the effects due to the presence of the plasma sheet.

(b) Field lines threading the plasma sheet are generally assumed to be closed. Cal-
culate the open and the closed contributions to the total magnetic flux across
the cross-section.
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(c) With 2b in mind, describe what exerts the force of 2a.

2. Solution:

(a) The force is given by the surface integral of the stress tensor (Vol. I,
equation 10.6); with the normal to the cross-section taken as pointing
antisunward, the integral represents the force exerted by the magne-
totail on the volume containing the planet. With conventional mag-
netospheric coordinates (x̂ sunward, ẑ northward), n̂ = −x̂; Fx > 0
means sunward force, and in the present model Fy = Fz = 0. With
total pressure (plasma + magnetic) assumed constant = BMT

2/8π
over the cross-section, the contribution of the pressure terms to Fx is
πRMT

2BMT
2/8π. The contribution of the magnetic tension terms from

the lobes is
−(BMT

2/4π)(πRMT
2 − 4ZPSRMT )

and from the plasma sheet

−(BMT
2/4π)4RMT

∫ ZPS

0

dz(z/ZPS)2 = −(BMT
2/4π)(4/3)ZPSRMT .

Adding everything together gives

Fx = − BMT
2

8π
πRMT

2

(
1− 16

3π

ZPS
RMT

)
,

a net antisunward force.

(b) Open flux (lobes): BMT (πRMT
2/2− 2ZPSRMT )

Closed flux (plasma sheet): 2BMTRMT

∫ ZPS

0
dz(z/ZPS) = BMTZPSRMT

(Note: magnetic flux is calculated from one half of the magnetotail
cross-section, the force from the entire cross-section.)

(c) The force from the lobes is exerted by tension of open field lines and
comes ultimately from the pull of the flowing solar wind. The force
from the plasma sheet is the tension of the stretched-out closed field
lines, balanced by the decrease of the total pressure with increasing
distance down the magnetotail.

3. (Vol. I, 10.3.3) The total pressure over the cross-section of the magnetotail must be
in balance with the external pressure from the solar wind. Typical BMT values in
the near-Earth magnetotail are ∼ 1/3 of what would hold off the solar wind dynamic
pressure ρV 2.

(a) Using the Newtonian approximation for the external pressure, estimate the
implied flaring angle of the tail magnetopause.

(b) If the solar wind thermal and magnetic pressure is ∼ 10−2× dynamic pressure,
and if the magnetic flux within the magnetotail remains constant (negligible
reconnection), what would be the limiting value of RMT ? Can you estimate at
how far down the tail that would be reached?
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3. Solution:

(a) The flaring angle α is given by sinα = V̂ · n̂. Pressure balance of the
magnetotail field with the external pressure given by the Newtonian
approximation implies V̂ · n̂ = BMT/

√
8πρV 2; thus α ∼ sin−1 0.33 ' 20◦.

(b) The quoted value of BMT implies that the external pressure outside
the near-Earth magnetotail is ∼ 10−1× dynamic pressure, so the lim-
iting value of RMT is reached when BMT decreases by another factor
∼ 3. Constancy of flux implies that RMT varies as 1/

√
BMT , hence the

limiting value of RMT is larger than the near-Earth value (R0 ∼ 20RE)
by a factor ∼

√
3, or RMT lim ∼ 35RE.

The rate of increase of RMT with distance x is related to the flar-
ing angle:

dRMT/dx = tanα ' sinα ' (BMT/
√

8πρV 2)0(R0/RMT )2 , or

dRMT
3/dx ' 3R0

2(BMT/
√

8πρV 2)0

(the subscript 0 refers to near-Earth values). This gives an estimate
of the distance tailward of the Earth at which RMT lim ∼ 3R0 is reached:

xlim ' x0 +R0(3
√

3− 1) ∼ 94RE .

(A more accurate treatment, adding a thermal pressure term to the
Newtonian approximation, gives xlim ∼ 140RE [Coroniti and Kennel
1972, JGR 77, 3361].)

4. (Vol. I, 10.3.3) Assuming the polar cap potential ΦPC is some fraction f of the solar
wind potential across a distance equal to the size of the dayside magnetosphere RMP

(defined by pressure balance), and representing the polar cap (= region of open field
lines) as a circle of radius RE sin θPC ' REθPC , calculate the effective length LT of
the magnetotail. Compare the amount of open magnetic flux with the dipole flux
beyond the distance RMP . Describe the shape and size of the open field line region
in the undisturbed solar wind (David Stern’s “window”).

4. Solution:

An expression for LT in terms of other parameters is given in Vol. I, equa-
tion 10.18 [note misprint: RP should be RP

2, same in equation 10.17] (LX ≡ fRMP ).
A more illuminating version is obtained if θpc is expressed in terms of the
equivalent dipole L value sin2 θpc = RE/L and BE in terms of the dipole
moment µ = BERE

3:
LTLXBs ≈ 2πµ/L

(Bs ≡ Bsw · µ̂). The right-hand side is the dipole flux beyond equatorial
distance L. Typical observed θpc ≈ 15◦ corresponds to L ∼ 15RE, somewhat
larger than typical observed RMP ∼ 10RE; thus the open flux can be nearly
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comparable to (∼ 30% less than) the dipole flux beyond RMP .

Dividing the above equation by RMP
3, expressing µ/RMP

3 in terms of solar
wind parameters through Vol. I, equation 10.1, and solving for LT gives

LT ≈ RMP
RMP

L

2π

fξ

√
8πρV 2

Bs

from which it is obvious that in general LT >> RMP > fRMP = LX. The
open field line region in the undisturbed solar wind, roughly a rectangle
with dimensions LX × LT , is thus greatly elongated in the direction of
solar wind flow, having a width narrower than the magnetosphere and a
length approximately equal to the entire magnetotail.

5. (Vol. I, 10.4.1) Idealize the region below the ionosphere as perfectly non-conducting,
down to an assumed highly conducting region below the Earth’s surface, with∇2Φ = 0.
What are the electric fields in the region below the ionosphere that are produced
as the result of magnetospheric convection and the associated ionospheric electric
fields? (assume horizontal scale lengths are large compared to the vertical sepa-
ration between the ionosphere and Earth’s conducting layer). Specifically, at the
Earth’s surface what would be the maximum vertical E below the polar cap with
ΦPC = 50 kV? At roughly what distance from a 12V DC power cable would one
have a field of this magnitude? (It has been suggested that ΦPC could be monitored
by ground-level measurements of the vertical E on the polar ice caps. From the
above estimate, would you expect this to be an easily practicable method?)

5. Solution:

Magnetospheric convection implies a horizontal variation of the electric
potential in the ionosphere (see, e.g., Vol. I, figure 10.5 left, where the
streamlines are also equipotentials of the electric field). A highly con-
ducting region below the Earth’s surface implies a constant electric po-
tential (in the frame of reference rotating with the Earth). There is thus
a horizontally varying vertical difference of potential between the iono-
sphere and the Earth (in any frame of reference). The equation ∇2Φ = 0
is to be solved with the boundary conditions Φ = ΦIS(θ, φ) at the top and
Φ = ΦE = constant at the bottom. With the vertical separation h (∼ 200 km)
very small compared to an Earth radius and assumed small compared to
the scale of horizontal variation of ΦIS, the solution is

Φ ≈ z

h
(ΦIS − ΦE)

where z is the altitude above the conducting region. At any geographical
location, there is a constant vertical electric field Ez ≈ −(ΦIS − ΦE)/h and
a horizontal electric field that decreases with altitude from its ionospheric
value to zero at the bottom.
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With a polar cap potential of 50 kV, the maximum vertical field is roughly
50 kV/100 km = 0.5 V m−1. An unshielded 12V DC power cable, laid out in
a straight line (far from other conductors), would produce an electric field
of magnitude larger than this out to distances of 24 meters. Measuring
the vertical electric field of ionospheric origin might thus require some
care with stray fields from other sources.

6. (Vol. I, 10.4.1)

(a) Electrons and positive ions in equal concentration (number density) n are in-
jected with zero initial velocity into crossed E and B fields. The particles follow
cycloidal trajectories, curving in opposite sense for + and - charges, but both
have mean drift velocity V = cE×B/B2.

(b) The same particles are injected with initial velocity V (same for + and - charges)
perpendicular to the magnetic field, with zero electric field. The particles gyrate
in opposite sense for + and - charges.

In both cases, the cycloidal/gyro motion produces charge separation. Assuming the
medium is locally homogeneous, calculate the implied electric field δE. Show that
it is opposite to the applied E for case 6a and in the direction of −V ×B for case
6b. For what value of n does δE become comparable to (-) applied E (case 6a) or
to −V ×B/c (case 6b)? (express as a dimensionless ratio involving n).

6. Solution:

Each injected particle is displaced by the gyromotion in a direction per-
pendicular to the velocity; the displacements of positive and negative
particles are in opposite directions, and the average distance of displace-
ment is equal to the gyroradius based on the mean drift speed (case 6a)
or on the injection speed (case 6b). At the boundaries of the locally ho-
mogeneous region, this produces an excess charge layer (+ on one side, -
on the other), with surface charge density enrg, where rg is the gyroradius
of the positive or negative particles. The electric field of these charge
layers is given by

δE = −4πn e

[
cE

B

] [
(mi +me)c

eB

]
(case 6a)

δE = −4πn e

[
V × B

B

] [
(mi +me)c

eB

]
(case 6b) .

The direction of δE is most easily determined by simply drawing the
appropriate pictures (the charges ++++ and − − −− outside the boxes
are those of the imposed E, and inside the boxes are those of δE):
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

hq
B

+ + +

− − −

6

E0

?

δE

imposed electric field

+++++++++++++++++++++++++++++++++++++

hq
B

E0 = 0 imposed plasma flow

-V0

−

+

6

δE

From the pictures it is obvious that the direction of δE is opposite to that
of the imposed E in case 6a and aligned with that of −V×B/c in case 6b.
The magnitude of δE is proportional to that of the imposed quantity, the
constant of proportionality being in both cases

4πn(mi +me)c
2

B2
=

c2

VA
2 .

If n is sufficiently large so that the Alfvén speed is less than the speed of
light, δE becomes dominant; in the equation above for case 6a, one must
now write E = E0 − δE, where E0 is the externally imposed field.

7. (Vol. I, 10.4.2) Consider a rotating sphere with an imbedded magnetic dipole (mo-
ment aligned with the rotation axis). The sphere is assumed to be highly conducting
(it is sufficient to assume only that the outer layers are highly conducting — why?).
Calculate the electric potential as function of latitude and longitude on the sur-
face. From that, calculate the electric field everywhere outside the sphere, under the
assumption that

(a) the sphere is surrounded by a vacuum,

(b) the sphere is surrounded by a plasma, sufficiently dense to enforce the MHD
approximation, but sufficiently tenuous so all mechanical stresses are negligible.
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Show that only in case 7b does the E×B drift correspond to corotation.

7. Solution:

Within the highly conducting sphere, the electric field in the corotat-
ing frame is zero; in the inertial frame, therefore, E = −V ×B/c with V
the corotation velocity. Just below the surface of the sphere at r = RP ,
the tangential electric field is

Eθ = −VφBr/c = − (2BPRPΩ/c) sin θ cos θ

from which the potential at the surface can be obtained by integrating
with respect to θ. (What happens much below the surface makes no
difference.)

(a) If the sphere is surrounded by vacuum, the electric potential outside
is given by the solution of Laplace’s equation with boundary condi-
tions of zero at infinity and specified potential at the surface of the
sphere. It is convenient to integrate Eθ by setting sin θdθ = −d cos θ
and to write the potential at the surface as

Φ = − BPRP
2Ω

c
cos2 θ + constant = − 2

3

BPRP
2Ω

c

[
3

2
cos2 θ − 1

]
.

The expression in [ ] is the Legendre polynomial of order 2, which
divided by r3 is a solution of Laplace’s equation (axially symmetric
quadrupole field). The potential in space is therefore

Φ = − BPRP
2Ω

c

RP
3

r3

[
cos2 θ − 2

3

]
.

To show that the E×B drift from this field does NOT correspond to
corotation, the tedious algebra of computing the fields and the cross
product is not necessary; it suffices to note that E varies as ∼ r−4

and B as ∼ r−3, hence E/B varies as ∼ r−1 (not as ∼ r of corotation
velocity).

(b) In this case, magnetic field lines are equipotentials of the electric field,
and the potential is determined by mapping from the surface along
dipolar field lines. It is now convenient to integrate Eθ by setting
cos θdθ = d sin θ and to write the potential at the surface as

Φ =
BPRP

2Ω

c
sin2 θ =

BPRP
3Ω

c L

where L = r/ sin2 θ is constant along a dipole field line; the second
expression therefore gives Φ in space as well. To compute the E×B
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drift it is useful to remember that the Euler potentials of the dipole
magnetic field are µ/L and φ:

Bdipole = ∇
(
BPRP

3

L

)
×∇φ = ∇

(
BPRP

3

L

)
× φ̂

r sin θ
.

With E and B both containing the factor ∇(1/L), it is simple to show
that cE×B/B2 = φ̂ Ωr sin θ.

8. (Vol. I, 10.4.2) For rigid corotation of plasma in a dipole magnetic field (dipole
aligned with rotation axis),

(a) calculate the charge density ρc implied by ∇ · E (in inertial frame of reference).
How does ρc vary with location along a particular field line? Calculate numeri-
cal values in electron charges per cm3 for some typical location in the magneto-
spheres of Earth, Jupiter, Saturn; compare with typical observed electron/ion
concentrations.

(b) Now consider the same situation from the corotating frame of reference. In this
frame, the electric field is zero and therefore also ∇ · E = 0. Verify that ρc in
the corotating frame is almost the same as in the inertial frame and therefore
non-zero (calculate the relativistic transformation corrections and show they
are small). What does this imply about Maxwell’s equations?

8. Solution:

(a) If E = −V ×B/c, then ∇ · E = −B · ∇ ×V/c+ V · ∇ ×B/c. For coro-
tation, ∇×V = 2Ω. (The ∇×B = (4π/c)J term is negligible, by the
assumptions stated in problem 7b.) The charge density is given by

4πρc ≡ 4π e ∆n = − 2Ω ·B
c

=
2Ωµ

c r3
(
2− 3 sin2 θ

)
=

2Ωµ

c L3

2− 3 sin2 θ

sin6 θ

where the two expressions on the right are for a dipole field with
moment antiparallel to the rotation axis (as at Earth).
The charge density varies strongly along the field line and changes
sign at θ = sin−1

√
2/3 = 54.7◦ (latitude 35.3◦).

The numerical value of ∆n (the difference between + and - concen-
trations) can be obtained from 4πe ∆n = ΩBz/c. It is convenient to
multiply both sides by e/me , converting the equation to ωp

2 = 2ΩΩe,
where ωp is the plasma frequency for an electron concentration ∆n
and Ωe is the electron gyrofrequency. With

ωp/2π = 8.98 kHz
√

∆n/1 cm−3 Ωe/2π = 2.80 MHz B/1 G Ω/2π = 1/τrot

we have ∆n = 8.0 × 10−7 cm−3(B/105 nT)(24 h/τrot) (note that ∆n de-
pends only on magnetic field strength, rotation period, and atomic
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parameters).

Some sample values (calculated ∆n and observed ne in cm−3, B in
nT) for different planetary magnetospheres (see also Vol. I, chapter 13
for parameter values):

Earth (τrot = 24 h):
r= 4 RE: B = 484, ∆n = 3.9× 10−4

magnetotail: B ≈ 20, ∆n = 1.6× 10−5

observed ne: from ∼ 10−1 to ∼ 4000

Jupiter (τrot = 9.8 h):
r= 5.9 RJ (distance of Io): B = 2083, ∆n = 4.1× 10−3

magnetotail: B ≈ 3, ∆n = 6.7× 10−6

observed ne: from ∼ 10−2 to ∼ 3000

Saturn (τrot ' 10.5 h):
r= 3.94 RS (distance of Enceladus): B = 350, ∆n = 6.4× 10−4

magnetotail: B ≈ 2, ∆n = 3.7× 10−6

observed ne: from ∼< 10−1 to ∼ 100

(b) The Lorentz transformations of charge and current density are
ρ′c = γ(ρ− J ·V/c2), J′ = γ(J− ρcV). In this problem we neglect all
currents except those that are result from advection of charge den-
sity; thus J ∼ ρcV may occur in one frame or another. The resulting
corrections to ρ′c are of order V 2/c2, negligible in most systems. The
implication is that only in inertial frames of reference is the validity
of Maxwell’s equations in their usual form assured; the divergence
equations in particular must be modified when used in a rotating
frame.

9. (Vol. I, 10.4.3) Construct a simple analytical model of magnetospheric convection
by solving for the ionospheric potential Φ with ∇Φ = −E∗ (corotating frame) or
∇Φ = −E (inertial frame) from equations (10.14) and (10.15) of Vol. I combined
with ∇ · I⊥ = J‖, under the following simplifying assumptions:

(a) The polar cap is a circle at colatitude θ = θPC � 1.

(b) The magnetic field is everywhere vertical; the Pedersen and Hall conductance
values are the same everywhere.

(c) The Birkeland (magnetic-field-aligned) current into or out of the ionosphere is
zero except at the polar cap boundary (and possibly at other boundaries to be
introduced later).

(d) The potential at the polar polar cap boundary is specified as Φ0 sinφ, where
φ is the local time measured from noon. (Hint: from the assumptions so far,
show that all local-time dependence must be a combination of sinφ and cosφ.)
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(e) The equations may be solved in the flat-Earth approximation, sin θ ' θ, cos θ ' 1;
however, the flat Earth is not allowed to be infinite, so the solution stops at the
equator, and you have to decide what is the boundary condition there (hint: 9c
is relevant). [For the mathematically more sophisticated: it is not that much
more difficult to solve analytically without the flat-Earth approximation.]

Obtain expressions for the potential, electric field, and ionospheric current, as func-
tions of θ and φ, and for Birkeland current as function of φ at θ = θPC .

Now introduce complete shielding of convection from θ > θS. Solve as above, with
boundary condition Φ = 0 at θ = θS (what would be the implication of the bound-
ary condition Φ = constant 6= 0?) Show that there must be a Birkeland current at
θ = θS; calculate its functional dependence on φ.

Can you suggest an association of the model Birkeland currents at θ = θPC and at
θ = θS with anything that is observed?

9. Solution:

Equations (see Vo. I, equations 10.8, 10.10, 10.14, 10.15), written for Earth’s
northern hemisphere (B̂ = −r̂), vertical B and constant conductance ap-
proximations:

E = −∇Φ (1)

I = ΣPE + ΣH r̂× E (2)

∇ · I = ΣP∇ · E = −ΣP∇2Φ = J‖ (3)

(E in these equations is really E∗. The difference between Φ in the coro-
tating and in the inertial frame is the corotational potential of problem
7b.) The Birkeland current J‖ is assumed zero except at the polar cap
boundary θ = θPC and possibly at other boundaries to be specified. Except
at these boundaries, Φ satisfies Laplace’s equation

1

sin θ

∂

∂θ
sin θ

∂Φ

∂θ
+

1

sin2 θ

∂2Φ

∂φ2
= 0 (4)

written in spherical coordinates with the radial derivatives omitted (Φ
is a function of θ and φ only). The φ-dependence comes only from the
boundary condition

Φ = Φ0 sinφ at θ = θPC . (5)

Since all the equations are linear, a Fourier analysis in φ can be done,
keeping only terms in sinφ and cosφ, for which equation (4) becomes

1

sin θ

∂

∂θ
sin θ

∂Φ̃

∂θ
− Φ̃

sin2 θ
= 0 (6)

where Φ̃(θ) is now the (complex) Fourier transform. (Additional terms
with no φ-dependence are possible.)
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It is sufficiently instructive to treat the problem in the flat-Earth approx-
imation, sin θ ' θ; then sin θ −→ θ everywhere in equation (6), and the two
independent solutions are easily shown to be

Φ̃1 ∼ θ Φ̃2 ∼
1

θ

[The full spherical solutions, without the flat-Earth approximation, can
be shown to be

Φ̃1 ∼
2 sin θ

1 + cos θ
Φ̃2 ∼

1 + cos θ

2 sin θ
=

sin θ

2(1− cos θ)
].

Separate solutions apply for θ > or < θPC, to be matched at this boundary.
For 0 < θ < θPC (polar cap), only Φ̃1 applies (non-singular at θ = 0), hence

Φ̃ = Φ0
θ

θPC
or Φ = Φ0

θ

θPC
sinφ (7)

For θPC < θ < θeq,

Φ̃ = c1
θ

θPC
+ c2

θPC
θ

(8)

where c1,c2 are constants determined by two boundary conditions: (5) plus
the boundary condition at the “equator” θ = θeq, which must be a condi-
tion of zero current flow normal to the equator (by symmetry, non-zero
current would flow into the boundary from both sides). From equation
(2)

−REIθ = ΣP
∂Φ

∂θ
− ΣH

1

θ

∂Φ

∂φ
(9)

or Fourier-analyzed

−RE Ĩθ = ΣP
∂Φ̃

∂θ
− iΣH

Φ̃

θ

so the boundary condition is Iθ = 0 at θ = θeq. The equations for c1,c2 from
the two boundary conditions are

c1 + c2 = Φ0 ΣP

[
c1 − c2

(
θPC
θeq

)2
]
− i ΣH

[
c1 + c2

(
θPC
θeq

)2
]

= 0

which give

c2 = Φ0

[
1 +

(
θPC
θeq

)2
ΣP + iΣH

ΣP − iΣH

]−1

c1 = Φ0

(
θPC
θeq

)2
ΣP + iΣH

ΣP − iΣH

[
1 +

(
θPC
θeq

)2
ΣP + iΣH

ΣP − iΣH

]−1
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13

and the solution

Φ̃ = Φ0

(
θPC
θ

+
θ θPC

θeq
2

ΣP + iΣH

ΣP − iΣH

)[
1 +

(
θPC
θeq

)2
ΣP + iΣH

ΣP − iΣH

]−1
. (10)

The Fourier-analyzed potential is complex if ΣH 6= 0; with Φ0 taken as
real, the real part of Φ̃ is the coefficient of sinφ and the imaginary part
the coefficient of cosφ. Despite the seeming relative simplicity of equation
(10), the algebra required to separate the real and imaginary parts in the
general case is too tedious to be worthwhile, and two simplified special
cases suffice. One is ΣH = 0; Φ̃ is then real, and

Φ = Φ0 sinφ

(
θPC
θ

+
θ θPC

θeq
2

)[
1 +

(
θPC
θeq

)2
]−1

. (11)

The other is the (fairly realistic) limit θPC << θeq; expanded to lowest
order, (10) becomes

Φ̃ = Φ0

[
θPC
θ

+

(
θPC
θeq

)2
ΣP + iΣH

ΣP − iΣH

(
θ

θPC
− θPC

θ

)]
and noting that

ΣP + iΣH

ΣP − iΣH

=
ΣP

2 − ΣH
2 + 2iΣPΣH

ΣP
2 + ΣH

2

we obtain

Φ = Φ0

[
θPC
θ

+

(
θPC
θeq

)2
ΣP

2 − ΣH
2

ΣP
2 + ΣH

2

(
θ

θPC
− θPC

θ

)]
sinφ

+ Φ0

[(
θPC
θeq

)2
2ΣPΣH

ΣP
2 + ΣH

2

(
θ

θPC
− θPC

θ

)]
cosφ . (12)

Much simpler is the situation for complete shielding at θ = θS. Equation
(8) then holds for θPC < θ < θS, and the second boundary condition is Φ = 0
at θ = θS. The equations for c1,c2 now are

c1 + c2 = Φ0 c1
θS
θPC

+ c2
θPC
θS

= 0

and the solution is easily obtained:

Φ = Φ0 sinφ

(
θPC
θ
− θ θPC

θS
2

)[
1−

(
θPC
θS

)2
]−1

; (13)

for θS < θ < θeq, Φ = 0. (If the boundary condition at θ = θS had been
taken as Φ = constant 6= 0, a φ-independent solution of Laplace’s equation
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14

would be added to (13), representing a physically unrealistic azimuthal
but non-corotational flow.)

From the solution for Φ(θ, φ), E and I are obtained by simple differen-
tiation, equations (1) and (2). The Birkeland current J‖ is assumed to be
a δ-function at θ = θPC; the current per unit length I‖ can be calculated
from the discontinuity of Iθ and hence of ∂Φ/∂θ:

I‖ = − ΣP

RE

[
∂Φ

∂θ

]θPC+

θPC−
=

ΣP

RE

1

θPC
(Φ0 − c1 + c2) =

2c2
θPC

ΣP

RE

.

From equation (11) (ΣH = 0),

I‖ =
2ΣPΦ0

RE θPC
sinφ

[
1 +

(
θPC
θeq

)2
]−1

.

From equation (12) (θPC << θeq),

I‖ =
2ΣPΦ0

RE θPC

{[
1−

(
θPC
θeq

)2
ΣP

2 − ΣH
2

ΣP
2 + ΣH

2

]
sinφ+

(
θPC
θeq

)2
2ΣPΣH

ΣP
2 + ΣH

2 cosφ

}
.

From equation (13) (shielding),

I‖ =
2ΣPΦ0

RE θPC
sinφ

[
1−

(
θPC
θS

)2
]−1

.

In the case of shielding, there is in addition a Birkeland current at θ = θS,
given by

I‖ = − ΣP

RE

[
∂Φ

∂θ

]θS+
θS−

=
ΣP

RE

∂Φ

∂θ

∣∣∣
θ=θS

and from equation (13)

I‖ =
2ΣPΦ0

RE

θPC

θS
2 sinφ

[
1−

(
θPC
θS

)2
]−1

.

The Birkeland currents at θ = θPC and θ = θS are generally identified with
the observed Region 1 and Region 2 currents, respectively.

10. (Vol. II, 10.2) The component of the interplanetary magnetic field parallel to the
planetary dipole moment (i.e., antiparallel to the dipole magnetic field in the equa-
torial plane) is generally considered the most effective in producing magnetospheric
disturbances. If Bz southward (at Earth) is increased by a factor 2, the Bz southward
may be thought roughly twice as much “geoeffective.” However, if the 2× increase of
Bz southward is accompanied by a 4× increase of solar wind density and no change
of solar wind speed, the net change of “geoeffectiveness” is likely to be small. Can
you think of a simple physical argument why this is so?
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10. Solution:

The “geoeffectiveness” depends on the value of Bz southward not by itself
but in relation to the strength of the geomagnetic field in the outermost
magnetosphere. Everything else being equal, however, the strength of
the geomagnetic field just inside the magnetopause, should scale as the
square root of the solar wind dynamic pressure. An increase of Bz south-
ward accompanied by an increase of solar wind density, keeping the ratio
Bz/

√
8πρV 2 unchanged, should therefore not change “geoeffectiveness”

much.

11. (Vol. II, 10.6.2) Assume the magnetosphere is filled, out to a radial distance RMP (≡
distance to subsolar magnetopause), with plasma having a uniform isotropic pressure
equal in value to the solar wind dynamic pressure ρV 2. Calculate the disturbance
field depression at Earth predicted by the Dessler-Parker-Sckopke formula (equation
(10.18) of Vol. II) and show that it is close in magnitude to the field compression
predicted from the dayside magnetopause currents. Is this a coincidence, or is there
a physical effect behind it? To be classed as intense, a magnetic storm must have
maximum Dst depression much larger than this; what (if any) are the implications?

11. Solution:

The energy density of isotropic pressure is (3/2)P . With the stated as-
sumptions, the Dessler-Parker-Sckopke formula gives

µb(0) = (4π/3) (RMP )3 3ρV 2 .

From Vol. I, equation 10.1

µ/ (RMP )3 =
√

8πρV 2/ξ

and combining the above two equations

b(0) = (ξ/2)
√

8πρV 2/ξ =
(
ξ2/2

)
µ/ (RMP )3

which is roughly of the same order of magnitude as the disturbance field
from magnetopause currents (see solution to problem 1). The two distur-
bance fields, however, have opposite signs and would tend to cancel each
other. The physical reason is that both the magnetopause current and
the ring current result from pressure gradients; if the plasma pressure in
the magnetosphere were uniform and equal to the external pressure (ide-
alized as also uniform), there would be no pressure gradients and hence
no disturbance fields.

A geomagnetic storm is in essence the inflation of the geomagnetic field
by enhanced internal pressure. For a storm to be classed intense, the
inflation should significantly exceed the opposite effect of compression by
external pressure.
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12. (Vol. I, 10.6) Write down the dimensionally correct form for the dependence of the
polar cap potential ΦPC on solar wind parameters. There is observational evidence
(“transpolar potential saturation”) that for large values of V Bs in the solar wind
(Bs ≡ Bz southward), ΦPC approaches a value independent of V Bs. Can you find a
dimensionally correct formula for ΦPC that is independent of V Bs? if yes, how does
it depend on the other parameters?

12. Solution:

The general dimensionally correct formula for ΦPC (from Vol. I, equation
10.39 and following discussion):

cΦPC ∼ V B RMP Ψ

(
B√

4πρV 2
,
4πΣPV

c2

)

where the subscript sw on solar-wind parameters ρ, V,B has been omitted
and Ψ is a function of two dimensionless quantities, written out in full. To
obtain a form for ΦPC that is independent of the product vB (but possibly
depending on V through the dynamic pressure ρV 2), Ψ must vary as the
inverse of both variables; then

cΦPC ∼
[

c2

4πΣP

] [√
4πρV 2

]
RMP

where the two quantities in [ ] have the dimensions (in Gaussian units)
of V and B, respectively. RMP depends on solar-wind dynamic pressure
as ∼ (ρV 2)−1/6. The limiting value of ΦPC depends on dynamic pressure as
∼ (ρV 2)1/3 and on ionospheric Pedersen conductance as ∼ ΣP

−1. [Note a mis-
print in the discussion of this topic in Vol. I, 10.64: in equation 10.56, denominator
should be 1 +Q1Q2F .]
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Shocks, Homework

13. a. The hydrodynamic jump conditions for plasma, γ = 5/3, are

M2
2 =

M2
1 + 3

5M2
1 − 1

→ 1

5
(1)

ρ2

ρ1
=
vn,1

vn,2
=

4

1 + 3/M2
1

→ 4 , (2)

where limits are for M1 → ∞. We can use these to write

p2

ρ2
=

v2
2

γM2
2

→ 3 v2
2 → 3

16
v2
1 =

3

16
v2

sw . (3)

This gives the temperature

TB =
mp

2kB

pB

ρB

≃ 3mp

32kB

v2
sw . (4)

A simplified of the day-side magneto-

sphere. Flow streamlines are shown as

solid curves originating at the Sun, far

to the left. The bow shock is a dashed

arc and the magnetopause is a thick solid

arc. The magnetosphere proper is dark

grey, with some white magnetic field lines

shown. The magnetosheath is the lighter

greay region between the bow shock and

the magnetopause.

b. Using eq. (3) gives

1
2
v2

B =
1

6

pB

ρB
, (5)

and thus
pB

ρB
+

2

5
1
2
v2

B =
16

15

pB

ρB
=

pS

ρS
. (6)

From this we find

TS =
16

15
TB =

mp

10kB
v2

sw = 1.2 × 105 K

(

vsw

100 km/s

)2

. (7)

Taking vsw = 800 km/s gives TS = 7.7 × 106 K.

1
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c. It is clear from eq. (2) that
ρB = 4 ρsw . (8)

Adiabatic compression leads to the ratio

ρS

ρB
=

(

TS

TB

)1/(γ−1)

=
(

TS

TB

)3/2

=
(

16

15

)3/2

= 1.102 . (9)

From this we find

ρS ≃
(

16

15

)3/2

4 ρsw = 4.407 ρsw . (10)

d. The flow angle is defined

tan θj =
vt,j

vn,j
(11)

where vt, the flow tangent to the shock, is the same on both sides. This leads to

tan θ2 =
vt

v2

≃ 4
vt

v1

= 4 tan θ1 . (12)

The deflection across the shock is

∆θ = θ2 − θ1 ≃ 4 θ1 − θ1 = 3θ1 , (13)

after using the small angle approximation to replace tan θj ≃ θj.

e. The post-shock velocity vector is

v2 = vn,2n̂ + vt,2t̂ = vn,2 [ n̂ + tan θ2t̂ ] = vn,2 [ n̂ + 4 tan θ1t̂ ] (14)

where n̂ is the shock normal and t̂ a tangent vector perpendicular to it. The square
magnitude is therefore

|v2|2 = v2
n,2 [ 1 + 16 tan2 θ1 ] . (15)

Compared to the local sound speed this is

|v2|2
c2s,2

=
v2

n,2

c2s,2
[ 1 + 16 tan2 θ1 ] = M2

2 [ 1 + 16 tan2 θ1 ] =
1

5
[ 1 + 16 tan2 θ1 ] ,

using the hypersonic limit from eq. (1). Setting this to exceed one gives the require-
ment

tan θ1 > 1
2

, θ1 > tan−1(1/2) = 26.5◦ . (16)

f. The radial and poloidal velocities are

vr =
1

r2 sin θ

∂ψ

∂θ
= 2

A

R2
mp

(

r2

R2
mp

− R3
mp

r3

)

cos θ , (17)

vθ = − 1

r sin θ

∂ψ

∂r
= − A

R2
mp

(

4
r2

R2
mp

+
R3

mp

r3

)

sin θ , (18)

2
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so evidently A is negative. The angle of the downstream flow relative to the shock
normal, n̂ = r̂, at r = Rbs, just inside the bow shock, is

tan θ2 = − vθ

vr
=

4(Rbs/Rmp)
3 + (Rmp/Rbs)

2

2(Rbs/Rmp)3 − 2(Rmp/Rbs)2
tan θ . (19)

According to part d. this must be tan θ2 = 4 tan θ1, and θ1 = θ, to polar angle, since
the flow is horizontal outside the shock. This leads to the relation

4(Rbs/Rmp)
5 + 1

2(Rbs/Rmp)5 − 2
= 4 , (20)

and therefore

Rbs =
(

9

4

)1/5

Rmp = 1.18Rmp . (21)

This result is often cast in terms of the “stand-off” distance between the bow shock and
magnetopause:

∆ = Rbs −Rmp = 0.18Rmp , Msw → ∞ . (22)

The simple model proposed above, a super-sonic flow encountering a spherical obstacle
of radius R, is one for which there has been much study. Laboratory experiments with
different Mach numbers and different fluids (i.e. differing γ) have led to empirical relations
of the form

∆

R
≃ α

ρ1

ρ2
, (23)

with values α ≃ 0.78 (Seiff, NASA Tech. Pub. 24, [1962]). Numerical solutions of fully
compressible hydrodynamics yield α ≃ 1.1 (Spreiter, Summers & Alkse, Planet. Space

Sci. 14 223 [1966]), which has been subsequently used to predict the stand-off distance
of the actual bow shock, at least for cases with high solar wind Mach number (see Farris
& Russell, JGR 99, 17681 [1994]). The simplified calculation we have performed here
has found a lower value, α = 0.18 × 4 = 0.704, due mostly to the departure of actual
post-shock flow from the incompressible solution we assumed. It is not, however, due
to our assumption of a spherical magnetopause. As shown in part e., the sheath flow
becomes supersonic beyond an angle of θ = 26◦. Inside this small region there is little
difference between a sphere and the actual magnetopuase. Differences outside that region
can affect neither the subsonic solution nor the stand-off distance.

3
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