SOLUTIONS

1. The upstream deHoffmann-Teller velocity is given by

$$ec{V}_{HT} = -rac{ec{n} imes(ec{B} imesec{V}_{in})}{ec{n}\cdotec{B}}$$

Show that this is also the de Hoffmann-Teller velocity in the region downstream, i.e., that automatically the downstream flow is field-aligned when transforming into the upstream de Hoffmann-Teller frame.

Solution:

 $\vec{n} \times (\vec{B} \times \vec{V}_{in})$ is the tangential electric field. The tangential electric field is constant through the shock and does not change. $\vec{n} \cdot \vec{B}$ is the normal magnetic field component. The normal magnetic field component does also not change through the shock. Thus the de Hoffmann-Teller velocity upstream and downstream is the same.

2. Derive the following expression for the ratio of downstream to upstream tangential magnetic field component through a MHD discontinuity

$$\frac{(B_t)_2}{(B_t)_1} = r \frac{(v_n^2)_1 - (c_{int}^2)_1}{(v_n^2)_1 - r(c_{int}^2)_1}$$

where $r = (v_n)_1/(v_n)_2 = \rho_2/\rho_1$ is the compression ratio and $c_{int} = (B_n)_1/(\rho_1\mu)$ the upstream intermediate speed. Use for the derivation the tangential momentum jump condition and the condition that the tangential electric field is constant through the shock.

Solution:

The tangential electric field in the HT frame is zero on both sides

$$v_{x1}B_{y1} = v_{y1}B_{x1}; \quad v_{x2}B_{y2} = v_{y2}B_x$$

Note that $B_{x1} = B_{x2} = B_x$

The tangential momentum balance reads:

$$\rho_1 v_{x1} v_{y1} - \frac{B_x B_{y1}}{\mu_0} = \rho_2 v_{x2} v_{y2} - \frac{B_x B_{y2}}{\mu_0}$$

or after substituting for v_{y1} and v_{y2} from the tangential electric field equation

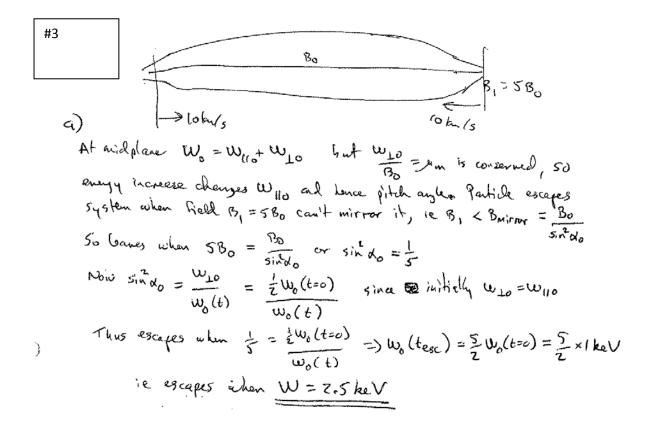
$$\rho_1 v_{x1}^2 \frac{B_{y1}}{B_x} - \frac{B_x B_{y1}}{\mu_0} = \rho_2 v_{x2}^2 \frac{B_{y2} \{B_x B_{y2}\}}{-\frac{B_x B_{y2}}{\mu_0}}$$

or

$$\frac{B_{y2}}{B_{y1}} = \frac{\rho_1 v_{x1}^2 - B_x/\mu_0}{\rho_2 v_{x2}^2 - B_x/\mu_0}$$

Now use $v_{x2} = v_{x1}\rho_1/\rho_2$ and $\rho_2/\rho_1 = r$ the after some manipulation one can write

$$\frac{(B_t)_2}{(B_t)_1} = r \frac{(v_n^2)_1 - (c_{int}^2)_1}{(v_n^2)_1 - r(c_{int}^2)_1}$$



b) In rest frame of mirror, particle reverses II motion t concrues energy.
Transforming to led frame shows at each house the parallel
speed has increased by 2Vm, is
$$BV_{II} = 2V_{IN} n$$
 where n is the
number of houses. The total charge required can be found from:
 $W_{IIO}(i) = W_{IO}(i) = 0.5 \text{ keV}$ and $W_{IO}(\text{First}) = W_{IO}(i)$, so
 $W_{IIO}(f) = W - W_{IO} = 2.5 - 0.5 = 2.0 \text{ keV}$
Thus $V_{IIO}(i) = \sqrt{\frac{2}{m}} 0.5 \text{ keV}$ is $V_{IIO}(f) = \sqrt{\frac{2}{m}} 2.0 \text{ keV}$
So $BV_{II}(tot) = v_{IIO}(f) - v_{IIO}(f) = \sqrt{\frac{2}{m}} 1 \text{ keV} (\sqrt{2} - \sqrt{\frac{2}{2}}) = \sqrt{\frac{2}{m}} 1 \text{ keV} \frac{\sqrt{2}}{2}$
For proton $\sqrt{\frac{2}{m}} 1 \text{ keV} = \sqrt{\frac{2 \times 10^3 \times 10^5 \times 10^{-19}}{100^{-224}}} = \sqrt{2 \times 10^3} \frac{3 \times 10^5}{2 \times 10^3} \sim 15 \text{ houses}$
Quick estimat of time needed: Assume $V_{IO} \sim 5 \times 10^5 \text{ m/s}$ $[1 \text{ yr} \approx 3 \times 10^3 \text{ secs}]$

#4 SEE "SHOCKS CHAPTER" on summer school Nicemeeting website

)

Have vell eqn
$$\nabla \cdot \vec{B} = 0$$

1-D shoch $\frac{2}{2y} \equiv \frac{2}{2z} \equiv 0 \implies \frac{2}{2x} B_{1x} = 0 \implies [B_{2x}] \equiv 0$
Ideal MIDD eqn for more conservation
 $\frac{2y}{2t} + \nabla \cdot (yY) \equiv 0$
steady state, so $\frac{3}{2t} \equiv 0 \implies \frac{2}{2x} (gV_x) = 0 \implies [gV_x] \equiv 0$
(b) MHD Momentum equation
 $S\left\{\frac{2}{2t} + Y \cdot \nabla\right\} Y \equiv -\nabla p + \frac{1}{N^0} (\nabla \cdot \vec{B}) \wedge \vec{B}$
 $\equiv -\nabla p - \nabla (\frac{B^2}{2p_0}) + \frac{1}{N^0} (\underline{B} \cdot \nabla) \underline{B}$
 $\frac{2}{2t} \equiv 0 \mod \nabla \equiv (\frac{3}{2t}, 0, 0) \qquad \text{so no transverse comparates in twees
 $(g(Y \cdot \nabla)V)_E = \frac{1}{\mu_e} ((\underline{B} \cdot \nabla) \underline{B})_E$
 $\Rightarrow \quad g V_x \frac{3}{3n} V_E = \frac{1}{\mu_0} \frac{B_x}{2n} \frac{B}{2n} = 0$
 $\Rightarrow \quad \frac{[gV_x, V_E}{2n} - \frac{B_x}{R^0} \underline{B} = 0 \qquad \text{some } \frac{2}{2t} S_{1x} = \frac{2}{2t} gV_x = 0$
 $\Rightarrow \quad \frac{[gV_x, V_E}{N} - \frac{B_x}{R^0} \underline{B} = 0 \qquad (1)$
(c) $[V_{1x}, \underline{B}_E - B_x, Y_E] = 0 \qquad (2)$
 $[B_x] = 0 \qquad (3)$
 $[gV_x] = 0 \qquad (4)$$

#5

(i)
$$+ gV_{x} = \sum \left[\frac{V_{t}}{\mu_{0}} - \frac{B_{x}}{\mu_{0}} \frac{B_{t}}{yV_{x}} \right] = 0$$
 since $\left[gV_{x} \right] = 0$
ie gV_{x} unitant
across shoch
 $B_{x}V_{t} - \frac{B_{x}}{\mu_{0}} \frac{B_{t}}{yV_{x}} = 0$ since $\left[B_{x} \right] = 0$
 $\sum \left[B_{x}V_{t} \right] = \left[\frac{B_{x}}{\mu_{0}} \frac{B_{t}}{yV_{x}} - \frac{B_{t}}{\mu_{0}} \right]$

substitute
$$\Lambda$$
 (21

$$\begin{bmatrix} V_{\rm R} \ B_{\rm E} - \frac{R_{\rm R}^2}{\mu_{0} g V_{\rm R}} \ B_{\rm E} \ \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} (V_{\rm X} - \frac{B_{\rm R}^2}{\mu_{0} g V_{\rm R}}) \ B_{\rm E} \ \end{bmatrix} = 0$$

$$\Rightarrow K_{\rm u} \ B_{\rm HE} - K_{\rm d} \ B_{\rm Hd} = 0$$
ie $\underline{B}_{\rm dE} = K \ \underline{B}_{\rm ht}$ ie upstreen and dometreen transverse inspect we trus of \underline{B} are peadled.
But $\Pi \ \underline{B}_{\rm dE}$, so plane intraining \widehat{n} and $\underline{B}_{\rm HE}$ (which is parallel the plane interverse \widehat{n} , $\underline{B}_{\rm u}$ and $\underline{B}_{\rm dE}$. Therefore \widehat{n} , $\underline{B}_{\rm u}$ and $\underline{B}_{\rm d}$ are provided the plane interverse \widehat{n} , $\underline{B}_{\rm u}$ and $\underline{B}_{\rm d}$ are plane interverse.
But $\Pi \ \underline{B}_{\rm dE}$, so plane interverse \widehat{n} , $\underline{B}_{\rm u}$ and $\underline{B}_{\rm d}$ are plane interverse.
But $\Pi \ \underline{B}_{\rm dE}$ is prove to plane interverse \widehat{n} , $\underline{B}_{\rm u}$ and $\underline{B}_{\rm d}$ are plane interverses $\underline{B}_{\rm d}$.
 $\beta_{\rm home}$ interverse \widehat{n} , \underline{n} and $\underline{B}_{\rm d}$ are $\underline{B}_{\rm d}$.
 $\beta_{\rm h} \cdot (\underline{B}_{\rm u} \wedge \underline{B}_{\rm d}) = 0$ since $\widehat{n} \ \overline{n} \rightarrow plane$ interverses $\underline{B}_{\rm d}$.
 $\beta_{\rm h} \cdot (\underline{B}_{\rm u} \wedge \underline{B}_{\rm d}) = 0$ since $\widehat{n} \ \overline{n} \rightarrow plane$ interverses $\underline{B}_{\rm d}$.
 $\beta_{\rm h} \cdot (\underline{B}_{\rm u} \wedge \underline{B}_{\rm d}) = 0$ since $\widehat{n} \ \overline{n} \rightarrow plane$ interverses $\underline{B}_{\rm d} = \underline{M}$.
 $\beta_{\rm h} \cdot (\underline{B}_{\rm u} \wedge \underline{B}_{\rm d}) = 0$ since $\widehat{n} \ \overline{n} \rightarrow plane$ interverses $\underline{M} \ \underline{B}_{\rm d}$.
 $\beta_{\rm h} \cdot (\underline{B}_{\rm u} \wedge \underline{B}_{\rm d}) = 0$ since $\widehat{n} \ \overline{n} \rightarrow plane$ interverses $\underline{M} \ \underline{B}_{\rm d}$.
 $\beta_{\rm h} \cdot (\underline{B}_{\rm u} \wedge \underline{B}_{\rm d}) = 0$ since $\widehat{n} \ \overline{n} \rightarrow plane$ interverses $\underline{M} \ \underline{B}_{\rm d}$.
 $\beta_{\rm h} \cdot (\underline{B}_{\rm u} - \underline{B}_{\rm d}) = 0$ since $\widehat{n} \ \overline{n} \rightarrow plane$ interverses $\underline{M} \ \underline{M} \ \underline{M}$

#6

(a) For a stationary planar system

$$\frac{d}{dx}(\rho V) = 0$$

$$\rho V \frac{dV}{dx} = -\frac{dP}{dx}$$
$$V \frac{dP}{dx} - \kappa \frac{d^2P}{dx^2} + \gamma \frac{dV}{dx}P = 0$$

(b) $\rho V = A$, mass flux $\rho V^2 + P = B$, momentum flux For the last equation write

$$V\frac{dP}{dx} - \kappa \frac{d^2P}{dx^2} + \gamma \frac{d}{dx}(PV) - \gamma V\frac{dP}{dx} = 0$$

or

$$-(\gamma - 1)V\frac{dP}{dx} - \kappa\frac{d^2P}{dx^2} + \gamma\frac{d}{dx}(PV) = 0$$

or

$$-(\gamma - 1)\rho V^2 \frac{dV}{dx} - \kappa \frac{d^2P}{dx^2} + \gamma \frac{d}{dx}(PV) = 0$$

or

$$\rho V \frac{V^2}{2} - \frac{\kappa}{\gamma - 1} \frac{dP}{dx} + \frac{\gamma}{\gamma - 1} PV = C, \text{ energyflux}$$

Note that $P/(\gamma - 1) = \epsilon$ is the energy density of energetic particles. (c)

$$A = \rho_0 V_0$$
$$B = \rho_0 V_0^2$$
$$C = \frac{1}{2} \rho_0 V_0^3$$

(d)

$$\rho V \frac{V^2}{2} + \frac{\kappa}{\gamma - 1} \rho V \frac{dV}{dx} + \frac{\gamma}{\gamma - 1} V(B - \rho V^2) = C$$

or

$$\frac{2\kappa}{\gamma+1}\frac{dV}{dx} = (V-V_0)\left(V-\frac{\gamma-1}{\gamma+1}V_0\right)$$

(e) Let $z = x(\gamma + 1)x/(2\kappa)$

$$dz = \frac{dV}{(V - V_0)\left(V - \frac{\gamma - 1}{\gamma + 1}V_0\right)}$$
$$= \frac{\gamma + 1}{2V_0} \left[\frac{dV}{V - V_0} - \frac{dV}{V - \frac{\gamma - 1}{\gamma + 1}V_0}\right]$$

or

$$z = \frac{\gamma + 1}{2V_0} \Big[\ln(V_0 - V) - \ln\left(V - \frac{\gamma - 1}{\gamma + 1}V_0\right) \Big] + C$$

note $V < V_0$ and dV/dx < 0

C describes the position of the structure in x, we take C = 0:

$$\frac{V_0}{\kappa}x = \ln\frac{V_0 - V}{V - \frac{\gamma - 1}{\gamma + 1}V_0}$$

Solve for V(x)

$$V = V_0 \frac{1 + \frac{\gamma - 1}{\gamma + 1} \exp(V_0 x / \kappa)}{1 + \exp(V_0 x / \kappa)}$$
$$\rho = \rho_0 \frac{1 + \exp(V_0 x / \kappa)}{1 + \frac{\gamma - 1}{\gamma + 1} \exp(V_0 x / \kappa)}$$
$$P = \rho_0 V_0^2 - \rho V^2 = \rho_0 V_0 (V_0 - V)$$
$$= \rho_0 V_0^2 \frac{2}{\gamma + 1} \frac{\exp(V_0 x / \kappa)}{[1 + \exp(V_0 x / \kappa)]}$$

The structure represents a strong modified shock by energetic particles. Since $P(x \to -\infty) = 0$, the shock has infinite Mach number and a compression ratio of 4. The energetic particle acceleration provides all the shock dissipation - there is no fluid subshock.

#7
(a)
$$E = -\frac{\sqrt{4}}{2} A_{0}^{2}$$
, $Y = (-\sqrt{2}, 0, 0)$ $B = (0, 0, 8)$
 $\Rightarrow E = (0, -\sqrt{8}, 0)$
(b) $\operatorname{mdu}_{H} = q (E + \underline{u} A_{0}^{2}) = q \left[(0, -\sqrt{8}, 0) + (u_{y}B_{y} - u_{x}B_{y} 0) \right]$
 $\operatorname{mdu}_{H} = q u_{y}B$ (1)
 $\operatorname{mdu}_{H} = -qBV - qBu_{n}(P_{0})$
 $\operatorname{mdu}_{H} = -qBV - qBu_{n}(P_{0})$
(b) $\Rightarrow U_{R} = construct, at two $\underline{u} = (V, 0, 0)$ is $U_{R} = 0$
 $\operatorname{pt} = (0, 0, 0)$ and $\overline{Z} = 0$
Diff (0) and subs. (2) and use $R = qB$
 $\operatorname{dt}_{H} = \frac{1}{2} \frac{du_{y}}{dt} = -R^{2}u_{x} - R^{2}V$
($F: \frac{d^{2}u_{y}}{dt^{2}} + R^{2}u_{n} = 0 \Rightarrow U_{x} = A \cos(Rt + \#)$ A, $\#$ controls
 $P_{T}: u_{y} = V$
 $\Rightarrow u_{u} = A \cos(Rt + \#) - V$
(i) $\Rightarrow u_{y} = \frac{1}{R} \frac{du_{y}}{dt} = -A \sin(Rt + \#)$
Institut unditions: $U_{y}(0) = 0 \Rightarrow \sin \phi = 0 \Rightarrow A = 2V$
 $V_{u}(n) = V \Rightarrow A - V = V \Rightarrow A = 2V$
 $V_{u}(n) = V = \pi R = 2V \cos Rt - V$
 $U_{u} = -2V \sin Rt$
 $U_{u} = 0$
Position: $E = 0$ since $2(0) = 0$
 $y = \frac{2V}{R} \cos Rt + C_{1}$ C_{1} constant$

#7 continued
y(s) = 0
⇒
$$\frac{2V}{3L} + C_1 = 0$$
 ⇒ $C_1 = -\frac{2V}{3L}$
⇒ $\frac{1}{32} = \frac{2V}{3L} (cn \Omega t - 1)$
The product : $x = \frac{2V}{3L} \sin \Omega t - Vt + C_2$, C_2 with the The $\frac{1}{3L}$
The product : $\frac{1}{3L}$ is $\frac{2V}{3L} = \frac{2V}{3L} = \frac{1}{3L}$
⇒ $\frac{2}{3L} = \frac{2V}{3L} \sin \Omega t - Vt + C_2$, C_2 with the The $\frac{1}{3L}$ is $\frac{2}{3L} = \frac{1}{3L}$
⇒ $\frac{2}{3L} = \frac{2V}{3L} \sin \Omega t - Vt$
(C) - No matrices in 2 direction
- uniform is $\frac{1}{2} direction
- uniform is $\frac{1}{2} direction$
- uniform is $\frac{1}{2} direction$
- uniform is $\frac{1}{2} direction
- uniform is $\frac{1}{2} direction
- uniform is $\frac{1}{2} direction$
The field x at the theory product of small is $\frac{1}{2} = \frac{1}{3}$
⇒ $\frac{2V}{3L} = \frac{1}{2} - \frac{V}{3L} = \frac{V}{3L} (\sqrt{3} - \frac{T}{3})$
(d) B $\int_{1}^{1} form \int_{1}^{1} - \frac{1}{3L} form is form if the mapping is the field of the maximum of the maximum of the large gyretic velocity of the reflection of the strength of the$$$$