
Planetary Magnetospheres: Homework Problems

Solutions will be posted online at http://www.ucl.ac.uk/∼ucapnac

1. In classical electromagnetic theory, the magnetic moment µL associated with a circular current ‘loop’ of radius
R which carries a current I is given by the product of current and loop area:

µL = I πR2.

Apply this definition to the current carried by a particle of charge q and mass m gyrating in a single plane
about a magnetic field of strength B. The particle thus moves on a circular orbit with speed v⊥ and radius
rg = mv⊥/(qB). Show that the magnetic moment associated with the current represented by the particle’s
motion is equal to the first adiabatic invariant discussed in lectures, i.e. µ = W⊥/B, the ratio of gyrational
kinetic energy to field strength.

Solution

Current is charge per unit time which passes a fixed point. For the particle, this may be written I = q/T , where
T is the gyroperiod, i.e. I = q2B/(2πm). The area of the orbital circle is A = πr2g = πm2v2⊥/(q

2B2). Hence
IA = 1

2mv
2
⊥/B = W⊥/B.

2. For an ideal collisionless plasma of bulk velocity u, Ohm’s Law reduces to

E = −u×B,

where E is the convective electric field. Show that the velocity component perpendicular to B is given by
u⊥ = E ×B/B2.

Solution

Using the given definition of E, we may write E ×B/B2 = (−u×B)×B/B2.

Now, (−u×B)×B/B2 = (B2u− (B · u)B)/B2.

If we define a unit vector b = B/B, we have E ×B/B2 = u− (b · u) b = u− u|| = u⊥.

3. Following on from Question 2, a general plasma flow u is sometimes described by its corresponding pattern of
convective electric field E. If E can be described as the gradient of a scalar potential through E = −∇φE , then
we have u⊥ = −∇φE ×B/B2.

Assume for simplicity that u|| = 0.

Consider plasma motion in a ‘magnetospheric equatorial’ plane which contains the Earth-Sun line and is per-
pendicular to the Earth’s magnetic dipole axis. Explain why the ‘streamlines’ of the plasma flow in this plane
(curves which have a local tangent vector parallel to u) are also curves of constant φE (i.e. equipotential curves).

In this equatorial plane, we may write φE as the sum of two terms:

φE = φCR + φCONV .

The first term is the corotation potential and dominates close to the planet. It is given by:

φCR = −ΩE BE R
3
E/r,

where ΩE is the Earth’s angular velocity of rotation, BE is the equatorial field strength at the Earth’s surface,
RE is the Earth’s radius and r is radial distance from the planet’s centre.

The second term is the convection potential and describes sunward flows (associated with magnetotail reconnec-
tion) which carry plasma from the magnetotail towards the dayside:

φCONV = −Eo y,
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where Eo is the convection electric field (assumed constant) and y is the Cartesian coordinate measured along an
axis (lying in the equatorial plane) which passes through the Earth’s centre (the origin) and is perpendicular to
the upstream solar wind direction (solar wind flows along the negative x direction). y is positive towards dusk.

There is a ‘stagnation’ point in the flow, lying on the positive y axis, whose location may be estimated as the
point where the magnitudes of the two potential terms are equal. Show that the radial distance of the stagnation
point is given (in units of Earth radii) by:

rsp/RE = (ΩE BE RE/EO)1/2

Using reasonable values for the Earth parameters, and a value EO = 1 mV/m, calculate rsp/RE for the Earth’s
magnetosphere. How does variability in EO affect this distance ?

For Jupiter, the planet’s very strong field, size and rotation rate cause rsp to lie outside the actual magnetosphere
- what is the physical meaning of this result?

Solution Setting the magnitudes of φCONV and φCR to be equal, and using the fact that the radial distance r is
equal to y for a point on the positive y axis, we obtain:

ΩE BE R
3
E/r = EOr → (r/RE) =

√
ΩE BE RE/EO

Using the EO value given (and transforming to MKS units), a rotation period of 24 hours for the Earth, a radius
of 6370 km for the Earth, and BE = 3× 10−5 T, we obtain:

(rsp/RE) =
√

ΩE BE RE/EO

=
√

(2π/(24× 3600))× 3× 10−5 × 6730× 103/10−3 = 3.83

An increase in EO represents a stronger flow associated with the Dungey cycle, and a consequently smaller
stagnation distance, which approximately represents the transition distance from sunward flow in the outer mag-
netosphere to corotational flow in the plasmasphere.

Jupiter’s stagnation point lying outside its magnetosphere means that the dayside equatorial magnetosphere of
Jupiter is dominated by rotational flows (more correctly, (sub)corotational with respect to the planet - see the
lecture notes).

4. The magnetic field strength B due to the Earth’s dipole field may be expressed as:

B = (BER
3
E/r

3) (3 cos2 θ + 1)1/2, (1)

where BE is the equatorial field strength at the Earth’s surface, RE is the Earth’s radius and r is radial distance
from the planet’s centre. θ denotes magnetic colatitude (the magnetic equator is defined by θ = π/2).

The following formula is for the pitch angle αc associated with the loss cone at a point P where the field strength
is BP :

sin2 αc = BP /BS , (2)

where BS is the magnetic field at the surface of the planet which is magnetically connected to the point P along
the same field line.

Calculate the value αc as a function of distance for locations in the magnetic equatorial plane, using the dipole
approximation. You may find the following formula for the shape of a dipole magnetic field line useful:

r = LRE sin2 θ, (3)

where LRE is the equatorial crossing distance of the field line.
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Solution For any magnetic equatorial point at distance LRE , a dipole field line passing through that point will
intersect the Earth’s surface at a colatitude θi given by:

RE = LRE sin2 θi

→ sin θi =
√

1/L

→ cos θi = ±
√

(L− 1)/L

(4)

Hence the magnetic field magnitude BS is given by:

BS = (BER
3
E/R

3
E) (3 cos2 θi + 1)1/2 = BE (3(1− 1/L) + 1)1/2. (5)

We can also evaluate the dipole formula at θ = π/2, r = LRE to obtain BP :

BP = BE/L
3. (6)

It follows that:

sin2 αc = BP /BS = L−3 (3(1− 1/L) + 1)−1/2 (7)

Using this formula to evaluate sin2 αc, hence αc, as a function of L, we obtain the following plot:
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5. The magnetic signatures of interchange observed by Galileo in Jupiter’s magnetosphere indicate that the inward-
moving flux tubes have magnetic field strengths typically higher than the surrounding plasma. If the total (plasma
plus magnetic) pressure inside the flux tube is equal to that of the ambient plasma outside, show that the small
change in field strength δB (inside minus outside field) is related to a corresponding change in plasma pressure
δp as follows:

δp/po = −2(δB/Bo)(1/βo) (8)
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where the subscript ‘o’ indicates quantities outside the flux tube, and β, as usual, equals the ratio of plasma
pressure to magnetic pressure.

Using this formula, calculate δp/po for values: (i) Bo = 1700 nT, δB = 10 nT, βo = 0.05; and (ii) Bo =
1700 nT, δB = 25 nT, βo = 0.05 .

Solution The sum of the magnetic and plasma pressures outside the flux tube may be written as B2
o/(2µo) + po.

If this quantity remains constant as we cross into the flux tube, we may express this by taking a zero differential
between inside and outside, as follows: d(B2/(2µo) + p) = 0 ≈ 2Bo δB/(2µo) + δp.

Rearranging and dividing by po, we obtain δp/po ≈ −Bo (δB/µo)(1/po) = −2(δB/Bo)(1/βo), since, by
definition po = βo(B

2
o/(2µo)).

Using this approximation and the values given, we obtain values of δp/po of about (i) -0.24 and (ii) -0.59.

6. Consider the typical information for Mercury and the Earth in the table from the lecture notes which compares
the magnetopause stand-off distances of various planets. Assuming that the dipole magnetic pressure of the
planet balances solar wind dynamic pressure at the magnetopause standoff point, calculate the ratio of solar wind
dynamic pressures just upstream of Mercury’s and the Earth’s magnetospheres.

Solution

The table in question indicates that the dipole magnetic pressure at Mercury’s dayside magnetopause is approxi-
mately proportional to (ignoring dipole tilt effects) [MM/(1.4RM )3]2 (i.e. the magnetic pressure is proportional
to the square of the expected field strength). Here MM is Mercury’s magnetic dipole moment. For the Earth,
this quantity will be [ME/(10RE)3]2. Taking the ratio, we obtain (MM/ME)2 (106/1.46)(RE/RM )6. Using
reasonable values of the planetary radii, this evaluates to ∼ 6.7. (N.B. I think the value of the magnetic moment
of Mercury should be more like 4×10−4ME , based on Messenger data - note also the usual variability expected
in solar wind parameters).

7. Chapman and Ferraro ( 1930) developed a model of a plasma cloud interacting with the Earth’s dipole magnetic
field. This model may be applied to investigate the behaviour of the magnetic field generated by the magne-
topause currents. In this picture, the Earth’s magnetic dipole is situated at the origin (Earth centre) and the
dipole axis is orthogonal to the upstream solar wind direction. The magnetopause is then modelled as an infinite
conducting plane, perpendicular to the upstream solar wind velocity, and situated a perpendicular distance of
RMP from the planet’s dipole axis. Magnetopause currents flow on this plane and generate an additional field
within the Earth’s magnetosphere which is equivalent to that of an identical magnetic dipole, known as the ‘im-
age dipole’, situated outside the magnetosphere at a distance 2RMP from the Earth’s centre along the direction
anti-parallel to the upstream solar wind velocity. We define the x axis to pass through the Earth’s centre (where
x=0) along this direction.

Using this model, calculate and make a plot of the ratio BTOT /BDIP as a function of distance along the x axis,
from the Earth’s surface to the magnetopause plane. Here, BTOT is the total magnetic field strength due to the
actual and image dipoles combined, and BDIP is the field strength due to the planetary dipole alone.

Solution

For the planetary dipole alone, the field strength outside the Earth and inside the magnetopause, along the x axis,
is given by the function BD(x) = (BER

3
E/|x|3) (using the nomenclature of Question 4). Now we may express

the field of the image dipole situated at x = 2RMP as the function BD(x− 2RMP ) = (BER
3
E/|x− 2RMP |3).

Adding the two, we obtain:

BT (x) = BD(x) (1 + |x|3/|x− 2RMP |3).

Hence BT (x)/BD(x) = (1 + |x|3/|x − 2RMP |3), which is always greater than unity. A plot of this quantity
versus x/RE is given below, using a reasonable value RMP = 10RE .
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