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Topics

e Elements of solar activity

e The sunspot cycle

e Atmosphere, radiance, variability

e Stars and their evolution

e Evolution, rotation, activity

e Variable activity and stellar radiance
e Magnetic breaking

e Starspots

e Solar and stellar flares

e The Sun in time
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Spectrum of emerging bipolar regions
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Sunspot records

e Sunspot cycles vary in strength, duration, shape, overlap, ...

Historical sunspot records; yearly smoothed sunspot number
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Sunspot cycle

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS
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Global activity, bipole, & multipole
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Simulating photospheric activity

Flux

emergence
Random

stepping

Diff. Rot. &
Merid. flow

Flux frag-
mentation

Includes:
magneto-convective coupling
magneto-chemistry: fragmentation and collisions
ephemeral-region population

Collision &
cancelation
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Effects of large-scale flows

Differential rotation and meridional
flow only, as viewed from 40°N
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Simulations of activity

Simulated “Sun”
from 40°N:

Present Sun
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Simulation of the solar cycle

Visualizing the evolution of the solar wind source domains,
as seen in a ‘corotating’ frame, over 1-1.5 magnetic cycles:

Surface view Surface grid Source-surf. grid

Equatorial @ Equatorial @ Equatorial @
40 North @ 40 North @ 40 North @

90 North @ 90 North @ 90 North

Streamer belt envelope
(27-d syn. Bartels

frame):

Streamer belt still:

From ‘Earth’: @@
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Large-scale solar field

e Large-scale solar field depends on source function,
dispersal, meridional flow, and differential rotation

-90°

0 11 22
Time (years)

e Good approximation of large-scale flux patterns,
Including polar fields
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And then there is the small stuff

e Quiet-Sun “magnetic carpet”:
- Large-scale patterns survive for months or more

- Network flux concentration survive for at most a few days, and
magnetic connections much less than a day, owing to emergence

of many small bipoles (“ephemeral regions”)
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“Flux-flux relationships”

e At moderate spatial and temporal resolution, radiative losses from
any thermal domain in the solar atmosphere scale with the
(unsigned) magnetic flux density underneath:

> F=a <|fB|>P

e Coronal flux density depends nearly linearly on magnetic field,
chromospheric flux density close to a square root.
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Magnetic free energy in coronal field

e Significantly non-potential : ~10-30% of the regions on the surface.

e ARs with significantly” non-potential coronae are ~3x more likely to
produces CMX flares that on average are ~3x more energetic.
* based on a subjective comparison of images and field extrapolations.
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Solar-like stellar activity

+ Density (kg/m3)

Spectral Clas

G
FRO0K. [Temperature)

10000

All rotating stars with
convective envelopes
exhibit atmospheric
magnetic activity.

+1.0
Colour (B-V)

8/9/2009



The Sun among the stars

17

e The Sun is a typical member

of the population of
“magnetically active stars”,

i.e., “cool stars”[Llwith variable
coronae, chromospheres, and

photospheres.

The Sun’s near-twins (like 18
Scorpii) behave like, but not

identically to, the Sun.

Essential ingredients for
activity: rotation, convective
envelope.
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Magnetic energy conversion
In stellar atmospheres

e Chromosphere and corona form an
integrated SYStem (e, r=30E.., ne.; Mo mr=50Muor mer) L
— power-laws; over 100,000x in flux density at e
Rdntgen wavelengths.
e Basal “background” heating:

- Adequate wave power, acoustic tunneling, 2
magnetic carpet, magneto-acoustic ol bt
couplings, ...? co
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Rotation and age
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Evolution and angular momentum
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Activity, rotation, age

e Activity decreases with decreasing rotation and increasing age.
e Note “saturation” and “supersaturation” for short rotation periods.
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Rotation and age:
evolution and mass loss
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Asterospheres, stellar winds, and
rotational breaking

Combine observed Ly o profiles
with models of wind-ISM inter-
action to derive mass loss rates:

Observed after inter-/
circumstellar absorption
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“Sun in time”

Surface magnetic activity in lower main sequence stars
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e Top: HD 206860; P=4.7d - a counterpart of the sun approximately 2
billion years ago.

e Lower curves: three Sun-like stars — HD 4628 (P=38d), HD 103095

(P=31d, or P=60d, age ~10 Gy) and HD 143761 (P=21d). HD
143761 may be in a state like the Sun’s Maunder minimum.
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Examples of stellar activity “cycles”
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Stellar activity “cycles”:
common but not dominant
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Stellar evolution and luminosity/radiance
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Radiance variations
at visible wavelengths.

e Increasing activity: “blocking” by starspots outweighs facular

brightening
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The Sun among the Stars ,, =

e Flux-flux relationships are
power laws over a factor
100,000 in soft X-rays

e The average Sun lies on

those relationships, and
moves along them
through the cycle

. Energy distribution in stellar
outer atmospheres is largely
Independent of stellar
properties
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Spots and flux emergence

e Starspots: common high-latitude or polar spots
in active stars, including “young Sun”

HD 12545

10,000x the area of
the largest sunspot

group; 600x more

flux than on the Sun

at cycle maximum!

Flux-transport simulation with AB Doradus (P=0.51d)
large latitudinal range and KOV, 15pc, 20-30Myr
strong meridional flow
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Spot formation on active stars

FR ... resulting force

ranzer et al. 2000

Deflection of
rising flux
e In arapidly rotating sun-like
star, the Coriolis force may

deflect rising flux to “high”
latitudes.

32

In a rapidly-rotating cooler
star, magnetic tension may
cause the entire loop to
rise, sometimes to high
latitudes.

ranzer et al. 2000
Tension of field
around small core

- P& Title 2001
Advection in
meridional flow

For solar emergence and transport
properties, high activity leads to
persistent flux reservoirs in the
polar caps, and likely spots or
spot/pore clusters.
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Models of flux emergence

e Simulated flux emergence for stars

Latitude A

90

F0°

o“ %‘ UK

X g 8 %8

Wo4M,
W05 M, -
E1M, -

10 25

Increasing rotation —

5 qra,
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Simulating magnetic activity
of other stars

Hypothesis:

Stellar dynamos are
like that of the Sun,
except for the
frequency of active-
region emergence
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sinl Lot}

Activity, rotation, and saturation
A star at 30x solar rate of flux |nJect|on IS of
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Simulations of activity

Simulated “Sun” Active star (30x higher rate of
from 40°N: flux injection), from 40°N:

Present Sun Young Sun at ~500 Myr*

8/9/2009



A young Sun?

e Simulation result assuming only increased flux emergence rates:

37 8/9/2009




Sun-like star
Cycle maximum

10 100 100
<B> (Mx/cm®)

Surface field Corona (for YOHKOH’s SXT)
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100,00

30x solar emergence rate

10,00

1.00F

0.01 M Ll I
10 100
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100

Surface field Coronagdor YOHKOH’s SXT)
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AB Dor = like star

Simulated magnetic field on a star like AB Dor
(KOV, 15pc, 20-30Myr, P=0.51d),

just prior to “cycle maximum”

by MacKay, Jardine, Collier Cameron, Donati, Hussain (2004)
Surface field
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Solar and stellar flares

e Power-law spectra and self-similarity.

Solar and stellar flares:

o
oo L « 08 = :
}A LA g i e IE
smg” T S 56" %713 Tau
| ‘!, “. \ — [ Stellar Flares
;}%Xg,“-"A\‘ .-“.4“[ "‘.A"‘“u‘k‘ U,‘(l'«\ () 54 -
1 ‘ = - AB Dor
§ i JErRLN 2 i 2 ]
L s 92! " RIRCrA -
. XA > 50 - Solar Flares B
El \ :
) : ;
\\ ‘= 48 | s
4 i ]
Hq\:lj(ﬁ Most energetic E 46 T . ]
. S| flare (known to [ [ ~2—/ Solar Microflares
\.f\ T.E;’SE:;?; WAL i
NANOFLARES MICAOFLARES (MILLY) l :.v ] 2000) 2
— ‘ ! 10 10 10
< R Temperature [K]

1014

41

8/9/2009






In perspective:

“At present it would seem that the most important and fundamental

problems of solar physics which are now pressing for solution are these:
e first, a satisfactory explanation of the peculiar law of rotation of the sun's

surface;
e second, an explanation of the periodicity of the spots;

e third, a determination of the variations in the amount of the solar
radiation at different times and different points upon its surface;

e fourth, a satisfactory explanation of the relations of the gases and other

matters above the photosphere to the sun itself -- the problem of the
corona and the prominences; and

 fifth, the discovery of [the source of the Sun’s energy].”

Charles//[7A. Young, 1892, "The Sun", p. 343,L/7[7
Kegan, Paul, Trench, Truebner, & Co., London
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Discussion topics

e 2/d recurrence pattern in medium-level

geomaagnetic activity

e Hysteresis in solar bipole and
neliospheric field

e Planetary magnetospheres and stellar
coronae

e Probability of huge flares and CMEs
e Syzygies and sunspot cycles
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Recurrence in terrestrial-magnetic activity

e http://www-ssc.igpp.ucla.edu/spa/papers/cme/
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The extended stellar atmosphere

1999/08/61 00:18 -
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An ideal world: solar/heliospheric model

25R  200R

v

« The surface magnetic field is
dispersed and advected to a good

« The large-scale coronal magnetic
configuration can be approximated by

a potential field below a “source
surface” (1969).

The heliospheric/ecliptic magnetic
/ configuration can be reasonably

approximated by the “Parker spiral”
(1958).
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PFSS model and coronal holes

«"" Mirror surface

e The large-scale coronal field is mostly potential

e It can be approximated remarkably well by an
electrostatic model:

— charge distribution on the solar photosphere
ey . i Source surface
- within a perfectly conducting sphere of ~5 Rg.

Solar surface

SOHO/EIT 284A with overlay of open- ”‘.
field boundaries from a PESS model

for different Ry (see other examples at
2005,/05/10 00:04:00 www.Ilmsal.com/forecast).

* I z I
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Simulation of the solar cycle

Visualizing the evolution of the solar wind source domains,
as seen in a ‘corotating’ frame, over 1-1.5 magnetic cycles:

Surface view Surface grid Source-surf. grid

Equatorial @ Equatorial @ Equatorial @
40 North @ 40 North @ 40 North @

90 North @ 90 North @ 90 North

Streamer belt envelope
(27-d syn. Bartels

frame):

Streamer belt still:

From ‘Earth’: @@

o1 8/9/2009



The “current sheet” for a model Sun

e The neutral line drifts around a
27-d synodic rate, as observed.

e Model:

52

One neutral line 90% of the
time.

One additional polarity island:
10% of the time

Only ~30 islands throughout a
full magnetic cycle.

Islands commonly pinch off
from, and re-merge with, the
neutral line.

Very few islands form at cusp:
the quiescent corona rarely
blows bubbles.
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At solar maximum, 30-50% of the interplanetary magnetic field
connects directly to active regions (incl. sunspots)

Model: field open to the heliosphere

171A 2001/03/13 00:13:10
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At solar maximum, 30-50% of the interplanetary magnetic field
connects directly to active regions (incl. sunspots)

Model: field open to the heliosphere
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Sunspot cycles: history and approximation

Successive cycles often differ strongly:

14IIIII‘IIIIIIIII‘IIIIIIIII‘IIIIIIIII‘

1 2 _9 $765432-101234567 8 9101112131415161718].920212223
s 1.OF ' v -
L e § | -
E 0'8_‘ ﬁ fj | { g 1
T A 1 T
g | 1 }4 ¥ |
04+ Pj I,' : : J 1 1 |

ol A Ht il gﬂi it

R | Ta! *[\H f'.\ | F |

0.0 -EL,&'}%\ IJI\I l(\Itﬂlkl I Ir* lfll*ﬂl ILHMIIIQ\ llii I\(I{(H‘l Iqlrl I&H_

1700 1800 1900 2000
Time (years)

8/9/2009



Total flux on the Sun: cycle-to-cycle modulation

Consequently the total flux on the Sun is modulated:

Surface flux (1022 Mx)
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Polar-cap (>60°) absolute flux

And the polar-cap field “capacitor” does not

simply alternate in strength or even polarity:
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What if flux “decayed” by, e.g., 3D transport?

The polar-cap flux behavior signals something is

missing from our understanding:
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What if flux transport were modified?

With polar-cap behavior ‘regularized™, the heliospheric and

cosmic-ray fluxes are roughly anti-correlated:

Heliosph. flux (10?2 Mx)
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*“ For example by introducing 3D flux transport (Schrijver & DeRosa, Baumann et al.)
or by modulating flux transport (Wang et al., Schrijver et al.).
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Planetary magnetosperes &
stellar coronae
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ON A TRANSITION FROM SOLAR-LIKE CORONAE TO ROTATION-DOMINATED JOVIAN-LIKE

MAGNETOSPHERES IN ULTRACOOL MAIN-SEQUENCE STARS

CAROLUS J. SCHRUUVER
Lockheed Martin Advanced Technology Center, 3251 Hanover Street, Palo Alto, CA 94304, USA; schrijver @lmsal.com
Received 2009 April 27; accepted 2009 May 8; published 2009 June 24

ABSTRACT

For main-sequence stars beyond spectral type M5, the characteristics of magnetic activity common to warmer
solar-like stars change into the brown-dwarf domain: the surface magnetic field becomes more dipolar and
the evolution of the field patterns slows, the photospheric plasma is increasingly neutral and decoupled from
the magnetic field, chromospheric and coronal emissions weaken markedly, and the efficiency of rotational
braking rapidly decreases. Yet, radio emission persists, and has been argued to be dominated by electron—
cyclotron maser emission instead of the gyrosynchrotron emission from warmer stars. These properties may
signal a transition in the stellar extended atmosphere. Stars warmer than about M5 have a solar-like corona and
wind-sustained heliosphere in which the atmospheric activity is powered by convective motions that move the
magnetic field. Stars cooler than early-L, in contrast, may have a Jovian-like rotation-dominated magnetosphere
powered by the star’s rotation in a scaled-up analog of the magnetospheres of Jupiter and Saturn. A dimensional
scaling relationship for rotation-dominated magnetospheres by Fan et al. is consistent with this hypothesis.

Key words: planets and satellites: general — stars: late-type — stars: low-mass, brown dwarfs — stars: magnetic fields

doi:10.1088/0004-637X/699/2/1.148
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Evaluate the probability of huge flares

e Use the characteristic power-law spectrum for stellar flares in
Audard et al. to fill out the table below. Assume there is no cutoff of
the flare spectrum.

e N.B.L,(Sun)=10%"%ergs; X-class flare ~ 1032 ergs

e Discuss the potential consequences of such large flares/ICMEs on
magnetosphere/ITM/troposphere.

THE ASTROPHYSICAL JOURNAL, 541:396-409, 2000 September 20

£ 2000. The American Astronomical Society. All rights reserved. Printed in US.A

EXTREME-ULTRAVIOLET FLARE ACTIVITY IN LATE-TYPE STARS

MARC AUDARD,'? MANUEL GUDEL,"? JEREMY J. DRAKE,* AND VINAY L. KAsuyAp®
Received 2000 March 7 accepted 2000 May 2

ABSTRACT
Extreme Ultraviolet Explorer Deep Survey observations of cool stars (spectral type F to M) have been
used to investigate the distribution of coronal flare rates in energy and its relation to activity indicators
Flare >1032 >1034 >1036 >1038 and rotation parameters. Cumulative and differential flare rate distributions were constructed and fitted
with different methods. Power laws are found to approximately describe the distributions. A trend
o toward flatter distributions for later type stars is suggested in our sample. Assuming that the power laws
en ergy erg S erg S erg S erg S continue below the detection limit, we have estimated that the superposition of flares with radiated ener-
gies of about 10°~10°" ergs could explain the observed radiative power loss of these coronae, while the

Likely interval between flares of given total energy or larger

S detected flares are contributing only = 10%. Although the power-law index is not correlated with rota-
un tion parameters (rotation period, projected rotational velocity, Rossby number) and only marginally with

the X-ray luminosity, the flare occurrence rate is correlated with all of them. The occurrence rate of
today flares with energies larger than 10°? ergs is found to be proportional to the average total stellar X-ray

luminosity. Thus, energetic flares occur more often in X-ray bright stars than in X-ray faint stars. The
normalized occurrence rate of flares with energies larger than 10°? ergs increases with increasing Ly/Ly,,

EK and stays constant for saturated stars. A similar saturation is found below a critical Rossby number. The
findings are discussed in terms of simple statistical flare models in an attempt to explain the previously
Draconis observed trend for higher average coronal temperatures in more active stars. It is concluded that flares

can contribute a significant amount of energy to coronal heating in active stars.
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Syzygies and cycles

e Critique (“referee”) the manuscript: evaluate arguments in favor and
against the proposed hypothesis:

Impact Generated Shockwaves are Proposed for the Origin of
Sunspots to Explain the Detected Planetary Correlations with Solar

Activity

Jozsef Garai
Department of Mechanical and Materials Engineering, Florida International University, University Park VH 183,
Miami, FL 33199, USA

e-mail: jozsef.garai@fiu.edu

Abstract Correlations between solar activity and the heliocentric longitudes of Jupiter,
Neptune and Uranus at the time of the syzygies of Jupiter and Saturn are detected. In order to
explain these correlations it is suggested that the resonance of the outer planets destabilizes the
orbit of Kuiper Belt Objects and generates a cyclical impact frequency on the Sun. The
vaporization of the object initiates a shock way disrupting the upwelling of the plasma resulting
in a sunspot formation. The proposed model is able to explain the length of the cycle, the
latitude distribution of the sunspots and the extremely long term stability of the cycles.
Calculating the positions of the Jovian planets at syzygies of Jupiter and Saturn allows the long
term prediction of the solar activity.
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