Energization of Trapped Particles

Mike Liemohn: U of Michigan

at the Heliophysics Summer School July 28-August 4, 2010 Magnetospheric Regions Interplanetary magnetic field Nightside magnetopause current Plasma mantle Magnetotall lobe Cusp Plasma sheet boundary layer current Central asma sheet Cross-tail current Plasma leid-aligned ou spheri Low-latitude boundary layer iones Ring curer Magnetopause Dayside magnetopause Solar wind current

The Inner Magnetosphere

- Inner magnetosphere is where space weather matters
 - This is where we fly lots of commercial and military satellites
 - Even the calm times are full of dynamic processes
- There are 3 main plasma populations in the inner magnetosphere
 - **Plasmasphere:** contains the mass
 - **Ring current:** contains the energy
 - Radiation belt: contains the dangerous particles

First Things First

Before we talk about the plasma populations.

Let's talk about particle motion again

■ In particular: <u>drifts, invariants, and periodicities</u>

Particle Motion

- Force on a charged particle in an E and B field
 - Say that E and B are perpendicular
 - Equipotential magnetic field lines...like the inner magnetosphere
 - Two forces:
 - Electric force:

$$\vec{F} = q\vec{E}$$

- Particle wants to move in the direction of **E**
- Magnetic force:

$$\vec{F} = q(\vec{v} \times \vec{B})$$

■ Particle wants to move in a circle around **B**

Solving this equation

- Two formulas for force on a particle:
 - Total EM force and Newton's law:

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

$$\vec{F} = m\vec{a}$$

- The steps:
 - Define your system and separate the terms/equations
 - Note that acceleration, velocity, and position are linked
 - Rewrite the equations in terms of position
 - Differential equation system: 2 equations, 2 unknowns
 - Isolate a variable and plug into the other
 - Means taking a lot of integrals and derivatives
 - Use initial conditions to get coefficients

In the Earth's Magnetosphere

- Easy math plasma sheet:
 - Magnetic field of ~ 10 nT and electric field of ~ 0.1 mV/m
 - Drift velocity:

$$v_{ExB} = \frac{E}{B} = \frac{10^{-4} V/m}{10^{-8} T} = 10^4 \frac{m}{s} = 10 \frac{km}{s}$$

Gyrofrequency:

$$\omega = \frac{qB}{m} = \begin{cases} \sim 1 \frac{rad}{s} & protons \\ \sim 1800 \frac{rad}{s} & electrons \end{cases}$$

- Is this drift fast or slow?
 - $1 R_E \sim 6400 \text{ km}$ and 1 h = 3600 s
 - Drift is $\sim 5.6 R_E/hour$
- During storms: things move faster
 - E can be $\sim 1 \text{ mV/m}$ and B can be $\sim 1 \text{ nT}$

What about the Inner Magnetosphere?

- Drift in the inner magnetosphere is different
 - Magnetic field is stronger and dipolar
 - Closer to the magnetic field source within the Earth
 - Electric fields can be shielded
 - Or intensified by localized FACs into low conductance regions
- What does it mean:
 - The calculation we just did is too simple
 - We should pay attention to motion along B field, too

The One Big Thing to Know About <u>Particle Motion</u>

Forces cause drift, which drives everything else

Particle Motions: Gyration, Bounce, and Drift

Three basic motions of particles in a strong dipole magnetic field

Adiabatic Invariants

- The three main equations:
- Gyration:

$$M = \frac{W_{\perp}}{B} = \frac{p_{\perp}^2}{2m_0 B} = \frac{E \sin^2 \alpha}{B}$$

■ Bounce:

$$J = \oint \vec{p} \cdot d\vec{\ell} = \oint p_{\parallel} d\ell = m \oint v_{\parallel} d\ell$$
bounce
bounce
bounce

Drift:

$$\Phi = \oint \vec{A} \cdot d\vec{\ell} = \int_{\substack{drift \\ path}} \vec{B} \cdot d\vec{S}$$

The influence of the first invariant

Magnetic mirroring

The Magnetic Bottle

Fusion:

z-pinch plasma confinement

Earth's dipole:

Geomagnetic trap near the equatorial plane

■ Betatron acceleration

- Energy scales with B
- So, an L³ dependence

Effect of the second invariant

■ First-order Fermi acceleration

- p (or v) scaleswith thesquare root offield line length
- Energization
 has an L²
 dependence

Understanding the third invariant

- Grad B drift: bigger particle orbits where B is smaller
- Curvature drift: very similar, and in the same direction

Schematic of proton drift at the equator

Two currents:
The dashed lines
Outer one is bigger

Net result:
Suppressed B field inside
Enhanced B field outside

Putting it all together

- One picture showing all three invariants
- Result: the westward ring current

Calculating Periods of Motion

Gyrofrequency and period:

$$\omega_g = \frac{|q|B}{m}$$

$$T_g = \frac{2\pi}{\omega_g}$$

Bounce period:

$$T_b = \oint_{bounce} \frac{d\ell}{v_{\parallel}} \approx 4LR_E \sqrt{\frac{m}{2E}} \left[1.38 - 0.32 \left(\sin \alpha_0 + \left[\sin \alpha_0 \right]^{\frac{1}{2}} \right) \right]$$

• where E is the particle energy and α_0 is the particle equatorial pitch angle, which ranges from 90° down to the loss cone edge:

$$\sin \alpha_{0,LC} \approx \left[\cos \lambda_m\right]^4$$

$$L = \frac{1}{\left[\cos\lambda_{m}\right]^{2}}$$

More Period Calculations

Drift period:

$$T_d = \oint_{drift} \frac{ds}{v_d} \approx \frac{1.43K_t c^2}{L(1 + 0.42\sin\alpha_0)} \left(\frac{m}{2E}\right)$$

■ where:

$$K_{t} = \begin{cases} 1.03 \cdot 10^{4} & \text{for electrons} \\ 5.66 & \text{for protons} \end{cases}$$

$$c = 3.10^8 \, m/s$$

$$B = \frac{3.12 \cdot 10^{-5} T}{L^3}$$

These are for $\alpha_0=90^{\circ}$

In detail, the periods depend on energy and altitude

The One Big Thing to Know About Invariants and Periodicities

Nature hates a change in magnetic flux through a particle trajectory

Now, on to the plasma populations

Plasmasphere, ring current, and radiation belts

Oh my!

■ There are others, too...

Schematic of the plasmasphere

 At lower latitudes, corotation dominates over convection, and the magnetic bubble fills with ionospheric material

Basic Definition: Plasmasphere

- Cold: Less than 1 eV, maybe up to 10 eV
- Dense: 100s-1000s cm⁻³, lower out near geos.
- Ionospheric: source is the subauroral ionosphere
- Mostly Protons: some helium and bit of oxygen
 - Oft-quoted composition: 77% H+, 20% He+, and 3% O+
- E-field dominated: spatial extent governed by magnetospheric electric field time history
- Two major losses: the drainage plume or the ionosphere
 - Increased convection can strip off the outer plasmasphere
 - On the nightside, ions fall back into the atmosphere
- Importance: dominates the mass density of the inner magnetosphere

Global Morphology

- IMAGE EUV has shown the plasmasphere to be a lumpy and bumpy creature
 - Tracer of the timehistory of inner mag. fields (mostly E, also a bit by B variations)

The plasmapause moves

Reaction of the nightside plasmasphere to geomagnetic activity.

Similar result, different source

Total Mass Content of the Plasmasphere

- Plasmasphere dominates the mass of the inner magnetosphere...just how big is it?
- Total number density integral:

$$N = \int_{V} nd^{3}v$$

- What are d³v and n?
 - Equatorial plane area of $\pi L^2 dL$ from L=1 to L_{pp}
 - Field line length is about 2L
 - Area contracts away from equator proportional to B⁻¹
 - Assume density along field line proportional to B
 - Cancels the B⁻¹ of the cross sectional area decrease
 - Density in equatorial plane: assume n=n₀L^{-a}
- Total mass: multiply by average kg/particle
 - Assume all protons or some mixture of H⁺, He⁺, and O⁺

The One Big Thing to Know About the <u>Plasmasphere</u>

The plasmapause

The Alfven boundary

Ring Current Morphology

■ The ring current is not a ring during storms

Basic Definition: Ring Current

- Hot: 1-400 keV
- Tenuous: quiet, 1 cm⁻³; active, maybe 10s cm⁻³
- Plasma sheet: source is near-Earth magnetotail, wherever that comes from
- Mostly Protons: During big storms, O+ can dominate
- Complicated Drift: E-field, B-field, Gradientcurvature terms
- Two major losses: Flow through or charge exchange
 - They drift out of the inner magnetosphere
 - They collide with the extended upper atmosphere of Earth
- Important: Dominates the energy density of the inner magnetosphere

The Biot-Savart Law

$$\Delta \mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_{V} \frac{\mathbf{J}(\mathbf{r}') \times (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3} d\mathbf{r}'$$

- Integral form says perturbation is:
 - Proportional to intensity of current density
 - Proportional to the volume of space filled by the current
 - Proportional to angle between current and relative position vector
 - Inversely proportional to the square of the relative distance
 - But the exponent is 3 in the equation...?

Symmetric Ring Current

RC-B Relationship

 Right-hand rule (Biot-Savart Law): westward current produces a southward magnetic field at Earth

■ RC-∆B Relationship

Symmetric current produces a symmetric perturbation

Asymmetric Ring Current

■ RC-∆B Relationship

- Weaker RC at some local time makes the perturbation asymmetric
- A completely asymmetric RC will still produce a symmetric component to the perturbation

Ground-based measurements of ΔB

LT-UT magnetic perturbation maps

Solar wind

Data

Model

Ring Current Simulation Results

Pressure and currents from a ring current model

Total Energy Content of the Ring Current

- Ring current dominates the energy content of the inner magnetosphere...just how big is it?
- Total energy integral:

$$W = \int_{V} n\overline{E}d^{3}v$$

- What are d³v, n, and E-bar?
 - Equatorial plane area of $\pi L^2 dL$ from $L=L_{min}$ to L_{max}
 - Take it to be a slab/wedge of thickness L
 - Assume a constant density everywhere in the slab
 - Density in equatorial plane: constant or some function of L
 - Assume a constant average energy (or some function of L)
- Composition?
 - Assume all protons or some mixture of H⁺, O⁺, and e⁻

The One Big Thing to Know About the Ring Current

The ring current is usually not a ring

View of the Radiation Belts

- Two belts: inner and outer
- Slot region: severe losses at that altitude

Basic Definition: Radiation Belts

- Extremely hot: 100s of keV to MeV
- Extremely tenuous: <<1 cm⁻³ all the time
- Plasma sheet/heliosphere: source is either
 - Energetic particles from the near-Earth magnetotail
 - Locally accelerated ring current particles
 - Captured SEPs or cosmic rays (or GCR byproducts)
- Mostly electrons: H⁺ is significant in the inner belt
- B-field dominated: Topology governs trajectories
- Lost by wave interactions: Eventually scattered out of their stably trapped orbits into the atmosphere
- Important: Dominates the reasons for spacecraft anomalies, damage, and failures

The AE-8 Model (solar min values)

 AE-8 and AP-8: Engineering models for spacecraft designers

$$PSD = \frac{Flux}{p^2}$$

Radiation belts are modulated by the ring current through the B-field

- Standard response during magnetic storms:
 - The Dst effect
 - Flux dropout due to inflation of magnetic field
- If no other losses, flux should fully recover

Radiation belts have their own drivers, related but separate from ring current

- Magnetic storms are ring current increases
- Radiation belts can increase, decrease, or show no change after a such a storm

Plasma Waves and RB Electrons

■ Plasma waves are critical for RB e- dynamics

Radial Diffusion

- Drift period of the particle in resonance with the wave frequency
 - Or multiples of one or the other frequency
 - Happening on the mHz scale (tens of minutes)

Calculating Radial Diffusion

- Energetic plasma sheet electrons pushed inward
- The basic radial diffusion equation:

$$\frac{df}{dt} = \left(L^*\right)^2 \frac{\partial}{\partial L^*} \left[\frac{D_{LL}}{\left(L^*\right)^2} \frac{\partial f}{\partial L^*} \right] - \frac{f}{\tau}$$

Expanding the derivative:

$$\frac{df}{dt} = \left[\frac{\partial D_{LL}}{\partial L^*} - \frac{2D_{LL}}{L^*}\right] \frac{\partial f}{\partial L^*} + D_{LL} \frac{\partial^2 f}{\partial L^{*2}} - \frac{f}{\tau}$$

 \blacksquare D_{LL} is a function of L*, M, K, solar wind conditions

Acceleration by Radial Diffusion

- From Shprits et al. [2004]
- External source is pushed inward
- Intensity
 depends on
 push strength
 (D_{LL}) and loss
 strength (τ)
 - D_{LL}: increases with L
 - τ: who knows

Local Acceleration

- Gyration of particle in resonance with the wave frequency
 - Again, or multiples of either of these
 - Same picture as before, but now on the gyration scale
 - Happening on the Hz to kHz scale (ms to s range)
- The usual suspect: nightside VLF chorus
 - Created by freshly-injected plasma sheet electrons
 - Energies around a keV (± a factor of 10)
 - Unstable "loss cone" distribution -> excites plasma waves
 - Intended consequence: pitch-angle scatter keV e-
 - Unintended consequence: accelerate 100s of keV e-

Resonance **Curves**

- A confusing intersection...
- Black lines: resonance curves
 - Particles are scattered on these lines
- Gray lines: constant PSD
 - Higher PSD inside, lower PSD outside
- Perfect circular arcs: constant energy
 - Scattering on a circle means no energy gain or loss for particles

Calculating Energy Diffusion

Again, a diffusion equation:

$$\frac{\partial f}{\partial t} = \frac{1}{\sqrt{E}} \frac{\partial}{\partial E} \left[\sqrt{E} D_{EE} \frac{\partial f}{\partial E} \right]$$

- The hard part: finding D_{EE}
 - D_{EE} is a function of E, α , L, MLT, and activity
 - You have to average D_{EE} also…it's a function of latitude
- Also: this is energy, not an invariant quantity
 - Complicates the issue of combining it with L diffusion

Radiation Belt Losses

Lots of losses

- Adiabatic de-energization
 - Tail and ring currents are inflating the field
 - Reversible process: particles not actually lost
- Magnetopause flow-out
 - Drift paths can cross this boundary on the dayside
 - Particles are gone: fly off to deep space
- Scattering into the loss cone
 - Pitch angle scattering by various waves

Lots of waves can cause this:

- Plasmaspheric hiss
- EMIC waves
- Magnetosonic waves
- Dayside VLF chorus
- Lightning whistlers

Calculating Pitch Angle Scattering

Again, a diffusion equation, but in pitch angle:

$$\frac{\partial f}{\partial \mu_o} = \frac{1}{h(\mu_o)\mu_o} \frac{\partial}{\partial \mu_o} \left[\left\langle D_{\mu_o\mu_o} \right\rangle h(\mu_o) \mu_o \frac{\partial f}{\partial \mu_o} \right]$$

■ where *h* is a bounce-average term and μ_0 is related to α_0 :

$$\mu_0 = \cos \alpha_0$$

- \blacksquare Again, the tough thing is calculating $D_{\mu\mu}$
- Also, this is a local variable, not an invariant quantity

Hard to interpret RB e- acceleration

- Different ways to get the same radial profile
- In fact, it's hard to even observe PSD
 - Measurements done in energy flux

Lots of processes in the radiation belts

Like a big balancing act between sources and losses

The One Big Thing to Know About the Radiation Belts

The radiation belts do their own d#mn thing

Summary of inner magnetospheric characteristics

■ Here's a nice little table of facts

Population	Density	Temperature	Source	Composition	Driver	Importance
Plasma- sphere	100s – 1000s cm ⁻³	<1 eV	Subauroral ionosphere	H ⁺ , some He ⁺ and O ⁺	E fields	Dominates mass density
Ring Current	<1 to 10s cm ⁻³	1-400 keV	Plasma sheet	H ⁺ and e ⁻ , O ⁺ in storms	E and B fields	Dominates energy density
Radiation Belts	<<1 cm ⁻³	100s keV to MeV	Plasma sheet, ring current, SEPs	Mostly e ⁻ , some H ⁺ (inner belt)	B fields	Dominates S/C damage

Inner Magnetosphere Summary

- All three particle populations are...
 - coupled together
 - controlled by the electric and magnetic field
 - influenced by external source/driver terms
 - important for understanding space weather
 - drastically modified during <u>magnetic storms</u>
- What about storms...
 - How is it modified?
 - Depends on the type of driver for the storm
 - Two main drivers:
 - ICMEs: interplanetary coronal mass ejections
 - CIRs: corotating interaction regions

Magnetic storms

- Big convection events within the magnetosphere
- The typical components:
 - Formation of a partial, and then symmetric, ring current (defining element = Dst perturbation)
 - Reduction (and subsequent enhancement) of radiation belts
 - Plasmaspheric drainage plume creation
 - Multiple substorm expansion phase auroral intensifications and magnetic dipolarizations
- Driving conditions last for hours, effects last for days

Different types of storm activity

A bit of the Borovsky-Denton chart

Parameter	ICME-Driven Storm	CIR/HSS-Driven Storm
Solar cycle phase when dominant	Solar maximum	Declining phase
Occurrence pattern	Irregular	27-day periodicity
Ring current	Stronger	Weaker
Radiation belts	Less severe	More severe

The One Big Thing to Know About Magnetic Storms

Know Your Driver Conditions

Final Side Trip: Plasma Waves

- Read "Waves in Plasmas" Thomas Stix
 - Not an easy read, but worth it
- Two big concepts:
 - Excitation of plasma waves
 - Playing with the dispersion relation and resonance conditions
 - Wave-particle interactions
 - Basic approach: quasilinear theory and diffusion coefficients
 - To do it right: nonlinear wave-particle interactions

Plane Waves and Wave Growth

Assume a plane wave:

$$\Psi = \Psi_0 \exp[i(\mathbf{k} \cdot \mathbf{r} - \omega t)]$$

- Frequency ω and wave normal vector k
- Then, for wave amplitude growth or decay:

$$\omega = \omega_R + i\omega_I$$

$$\exp[-i\omega t] = \exp(-i\omega_R t) \cdot \exp(\omega_I t)$$

■ If ω_I >0, then the wave amplitude will grow

Dispersion Relation

- How do we know if $\omega_I > 0$?
- Solve the dispersion relation
 - Plug plane wave formula into Maxwell's equations

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

- Magnetostatic waves: B=B_{wave}, E=0
- Electrostatic waves: E=E_{wave}, B=0
- Electromagnetic waves: E=E_{wave}, B=B_{wave}
- Solve for ω (real and imaginary)
 - Real part: gives you what frequencies can exist
 - Imaginary part: gives you wave excitation/damping rate

Wave-Particle Resonance

■ The resonance condition:

$$\omega - k_{\parallel} v_{\parallel} + n \omega_g = 0$$

- Particles interact with waves of very specific frequencies
- "n" is any integer: zero, positive, or negative
 - n=0: Landau resonance (also called Cherenkov resonance)
 - n≠0: cyclotron resonance

What does it mean?

- Particle and wave are *in phase* with each other
- Energy easily exchanged between the two
 - Particle is emitting EM oscillations of this frequency
 - Particle is absorbing EM radiation of this frequency

Wave Growth and Decay

- Bumps in the particle distribution function are flattened
- Example: photoelectron distributions
 - Many possibilities for bumps in the distribution function
 - Electrons will excite plasma waves that will then scatter the electrons
- Important Sidenote:
 - Once a wave is excited, it can propagate and/or interact with other plasma populations

Quasilinear Theory

- Basic assumption: small-amplitude waves
 - \blacksquare B_{wave} is much smaller than B₀
 - Change of f is much slower than change in B_0
 - So: perturbation on a static background
- Reduces to a diffusion equation

$$\frac{\partial f}{\partial t} = \frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 D_{pp} \frac{\partial f}{\partial p} + p D_{p\alpha} \frac{\partial f}{\partial \alpha} \right] + \frac{1}{p \sin \alpha} \frac{\partial}{\partial \alpha} \left[D_{\alpha p} \frac{\partial f}{\partial p} + \frac{D_{\alpha \alpha}}{p} \frac{\partial f}{\partial \alpha} \right]$$

- Finding the diffusion coefficients is the hard part
 - Typically involves lots of nested integrals/loops
 - Particle energy and pitch angle, wave frequency and wave normal angle, location along a drift path

The One Big Thing to Know About Plasma Waves

Plasma waves are everywhere

The One Big Thing to Know About This Talk

The inner magnetosphere is a highly coupled system, and there is still a lot to learn