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Outline of Lecture

 Brief introduction to the heliosphere.

 Introduction to cosmic rays/energetic
particles.

« Various sources of cosmic rays — Sun,
Interplanetary Medium, Galaxy.

Galactic Cosmic Rays are the main focus.

e Temporal variations of cosmic rays are
observed on a continuum of time scales — up
to 10° years.



* These serve as probes of conditions long
ago (and also far away).

 To use this tool, we must first unravel the
physical processes relating heliospheric
conditions to observed cosmic-ray
variations.

The Parker Equation.

* The major tool for understanding cosmic
rays is the Parker transport equation. It is
applicable and an excellent approximation
nearly all of the time.

* The problems which I prepared are all
based on this equation.






SOLAR CORONA - SEEN DURING A TOTAL ECLIPSE

Total Solar Eclipse 1999 © 2004 Miloslav Druckmiiller




Termination Shock

Heliopause




An instructive analog may be seen in a kitchen sink.

J. R. JOKIPII



A more-accurate analog model was created by Prof. Hsieh
of the University of Arizona physics department.




Cosmic Rays =
Energetic (charged) Particles

They are present wherever the ambient density is low
enough to permit them to exist.

They exist from above thermal energies to more than 102°
eV, have with few exceptions a normal composition, and
are almost always isotropic in direction of arrival.

They are interesting in their own right, but also serve as
probes to determine conditions in space far away or
long ago.

They also pose a significant hazard in space for both
Instruments and especially humans.



The thermal plasma distribution and the energetic-particles
combine to form the full spectrum. The thermal particles contain
nearly all of the mass and momentum. Mostly, the energetic
particles respond to the plasma.
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The origins of
galactic cosmic rays

e Pinpointing a direct source is
Impossible (except for,
perhaps, the highest-energy
cosmic rays)

— Individual cosmic rays move
along random paths in the
turbulent magnetic fields.

— Observed to come from all
directions in the night sky (at
any point they are isotropic in
arrival direction.

e |Indirect methods indicate that
most cosmic rays < 10%° eV
are from shock waves driven
by supernova explosions SNR 1006 — Chandra




Heliospheric
effects

Cosmic-Ray Spectrum
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There are also solar
energetic-particle
events.

.

; 5 NOVEMBER [960 EVENT
= i DEEP RIVER NEUTRONS
- 9 1, = 0213 UT
O
& g, = 16°
£ 100 L
-
Z
w
-
L
2 ]
=z
b

B =
uzd - ..“c ¢
.‘oo
‘o2

tj ..."o.‘
<1 by
x 10 : ® ... '
s [ THEORETICAL CURVE N
< i e .
',_ —
% e » L ]
S ~

re

t

| | | | ] | 1 1
o) 3 € 9 2 15 18 2l

TIME (HOURS)

Theoretical fit, using equation 122, to the Deep River neutron
monifor data for the November 15, 1960, event. 6 is the angle between the
flare and the foot of the average magnetic field line passing through the

point of observation [Burlaga, 1967].



Solar

Average galactic
cosmic rays with
transient solar particles
superimposed.

The solar event lasts
hours to a day or so.

The average intensity
at energies >~ 100 MeV
is dominated by
galactic cosmic rays.
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Log[dj/dT (flux/m? sec st MeV)]

The anomalous cosmic rays:  Voyager 1 observations of
Cummings, Stone and Webber, 1996
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They include many elements — He, O, Ne, etc, but very little C. A major
clue regarding their origin is that most are observed to be singly charged.



COUNTING RATE

NUMBER

The variation of > 3 Gev protons at Earth and

sunspots since 1950.
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Cosmic-Ray variations are seen at all time scales observed.

They can be observed using a variety of techniques and over
a variety of time scales. In this lecture, the relation to the
basic physics of cosmic-ray transport will be discussed.
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Brief Summary of Cosmic-Ray
Time Variations

Short, irregular flucturations caused by solar
wind variations — both from irregular solar effects
and co-rotating with the Sun.

Quasi-periodic 11-year and 27-year solar cycle-
related variations.

Longer-term variations — some related to
heliospheric phenomena, others of interstellar
origin.

To understand these, we must understand
cosmic-ray transport.

There are also related spatial variations.



Forces acting on energetic charged particles In
a collisionless plasma such as the solar wind:

e Lorentz force in cgs units (note: astrophysicists
nearly all use cgs units, not mks).

e Other forces are generally small for most
applications in the heliosphere and interstellar
medium, but can be added as needed (e.qg.
collisions, gravity, radiation pressure, etc.)



Parker Spiral Magnetic Field

e The solar wind drags out the solar
magnetic field. Because of the large radial
acceleration (expansion) near the Sun, the
field is very nearly radial near the Sun.
Solar rotation lead to a spiral shape. We
can write:

Here, A is generally nearly constant in magnitude around
the Sun, but changes from positive to negative at a current
sheet, called the heliospheric current sheet.



In the heliosphere cosmic rays move in the interplanetary
magnetic field. They gyrate about the magneic field and
undergo gradient and curvature drifts.




The magnetic field is also fluctuating and turbulent.

Following Fermi, the transport of cosmic rays in a
turbulent magnetic field is described statistically. The
turbulent electromagnetic field is described statistically.
The particles are ‘scattered’ by magnetic fluctuations at

~ I'g.

Particle Trajectory

Scattering




Motion in an irregular magnetic field is sensitive to initial conditions (chaotic).

Magnetic Field
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T 1Tajeliory -

Magnetic Field

Partilces may be thought of as being ‘scattered’ by the
magnetic irregularities. As pointed out two days ago by
Bhattacharjee, this leads to diffusive behavior.

In general magnitude, the scattering mean free path A~ nr,
Then the diffusion coefficient k ~ n ry, w/3 ~ 1022 cm?/sec.



In this case neglecting the

background fluid velocity ,
we can understand a solar

cosmic-ray event using
only standard diffusion

The solution to this is the
usual diffusion solution:

Of course, this must be
really done in a more-
general geometry, such as
spherical. Also, other
effects must be included.
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Diffusion corresponds to a random walk.

Thus, in a given time A t,
(X-x0)?is ~k At

The time to diffuse a given distance scales as the
square of the distance.

For a ~GeV cosmic rays in the inner heliosphere, r, ~ .01
AU ~ 10" cm. Hence k ~ 10?2 cm?/sec. The time to diffuse
100 AU ~ 10% cm is ~ few years.



Particle transport in the heliosphere Is

actually the combination of four effects.

Diffusion: caused by the scattering of the cosmic rays by
the irregularities in the magnetic field. The associated
diffusion x; Is significantly larger along the magnetic
field than normal to it.

Convection: Outward from the Sun at the solar wind
velocity V,,.

Guiding-center drifts: given in terms of the average
magnetic field BO, the particle charge q by

Vg = pew/3q) V x ( By/|Bg|?)

Energy Change: caused by expansion/compression of
the background fluid V - U.

These are combined in Parker’s transport equation, first
written down nearly 50 years ago.



The Parker Transport Equation:

of _ 0 |9 ) Diffusion
ot ox; R i Ox; j
_U -V f ) Convection w. plasma
-V d -V f ) Grad & Curvature Drift
—I— 3 V-U L{%’TJ;Z?} ) Energy change

_I_Q ) Source

Where the drift velocity due to the large scale curvature
and gradient of the average magnetic field is:

cw B T

Vg=" Vx {—2}3 V4l =0 (—C’w)
3q B L

It is difficult to overstate the importance of this equation. It

is the basis of 95% or more analyses of energetic particles and
cosmic rays — Sun, Heliosphere, galaxy, intergalactic, etc.



Anisotropy

 The Parker transport equation is generally applicable for
cases in which the anisotropy is small. The (small)
anisotropy is given by:

Anisotropy Streaming Flux

e This should be routinely monitored for any given problem.
If it Is not satisfied, or is only marginally satisfied, other

approximations are required (or use a brute-force orbit
Integration).



The standard paradigm for galactic and anomalous cosmic rays
in the outer heliosphere

Galactic Cosmic Rays

Trajectory ANOMALOUS COSMIC RAYS

Drifts
Solar Wind  se=b
Random Walk ™"\




How are Cosmic Rays
Accelerated to High Energies?

The Parker equation applies to the high
energies.

The energy change appears in the term
proportional to V - U. Compression is important!

Shocks involve compression. Compressions
small in other places (reconnection, turbulence,
etc). This implies slow acceleration.

Hence, shocks have been the focus of most
explanations of charged-particle acceleration
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The spectrum is a power law in momentum with index

depending only on the shock ratio r.



Diffusive Shock Acceleration

* Discovered by four
iIndependent teams:

— Bell (1978), Krymsky (1977), el
Axford et al (1977), S}nglf S
Blandford & Ostriker (1978)

e Particles diffuse back and
forth across a converging
flow (a shock), being
accelerated at each
crossing.

o Applies also at more-gradua

compressions.



Heliospheric Particles

Termination

Propagating Shock Shock

Co-rotating shock
/
@ Bow Shock
Sun

Heliospheric Sources of Energetic Particles



Solar-Energetic Particle (SEP) Paradigms

Impulsive
Events

In the early-mid
1990’s, the two-class

paradigm was Gradual — M
su ted Events @ A
goeste Q%%Q:Q*\M
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ACE Observations (1AU)
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Co-rotating Interaction Regions
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Corotating Interaction Regions

Ulysses data
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These all contribute to the energetic-particle
environment at Earth.

But important effects comes from energies >~
100 MeV and higher. These are primarily
galactic cosmic rays, coming into the
heliosphere from the galaxy. They are a primary
hazard to humans in space

Below some 1013 eV, they are significantly
modified by the heliosphere.

Galactic cosmic rays ~ 100 MeV-10GeV will be
the focus of the rest of this lecture.



This is a schematic
illustration of cosmic rays in
the heliosphere. There is an
isotropic, spatially
homogeneous intensity
coming from large distances.

The goal is to determine the
important physical processes
and obtain quantitative
models of the etfects of the
heliosphere on observations.




Interstellar Causes of Cosmic-Ray
Variations?

Two Kinds - the Earth could pass through cosmic-ray variations in its motion
through the interstellar medium, or dynamical variations in the interstellar
gas could cross the solar system.

Such variations to exist long enough for the motion of the solar system to
bring the Earth through them, the transport of galactic cosmic rays would
have to be much less rapid then is currently thought to be possible.

Diffusive transport: Consider a fluctuation in the cosmic-rays of scale L,

which has a diffusive lifetime 1 ~ L?%/x, where « is the cosmic-ray diffusion
coefficient. If the solar system is moving at a speed Vg, it will take a time
L/V¢ to cross this fluctuation. Therefore, we require L?/x >> L /V¢.

Setting V¢ = 20 km/sec and k = (1/3) A ¢, where A, the diffusion mean free
path >> cosmic-ray gyro-radii, we find that L >> 3 x 101/ cm, which would be
crossed by Earth in >> 10° yrs.



o -

Diffusive loss, K

Diffusive loss, K

Earth, V_

Diffusive loss, K

[llustration of the Earth passing through a quasi-static
region of spatial scale L. The diffusive loss time is = L?/x.
The Earth passes through the region in = L/Vy



Effects of the Heliosphere on the Local
Interstellar medium.

 ltis likely that the heliosphere affects the
environment in the local interstellar medium, to
several hundreds of AU.

* The effects depend on the poorly determined
transport parameters in the LISM. These effects
have not been much addressed in the published
literature.

* This effect has not been studied to any significant
degree.



An important parameter in this is -, the
diffusion coefficient in the local ISM. There are two important

dimensionless parameters which will determine the nature of
the boundary condition. They are

It is readily seen that if -, is large enough that both (T)
and r-(T) are much less than unity, the diffusion in the local
ISM is very rapid, and the boundary may be taken to be a
standard " free escape"” boundary at the heliopause. At the
heliopause we set the distribution function to be interstellar.



Heliospheric Causes of Galactic
Cosmic-Ray Time Variations

e Variations with time scales less than about
10°"5 years are probably heliospheric in
origin.

e These variations are caused by solar-wind
fluctuations and and changes in the Sun
and heliosphere.



There is a broad, continuous spectrum of fluctuations, with
spectral peaks at certain periods (solar cycle, etc.
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The heliospheric magnetic field for much of a sunspot
cycle is organized by the heliospheric current sheet,
which separates the northern and southern
heliospheric magnetic field.




The current sheet changes from sunspot minimum to sunspot
maximum




The Physical Picture of Galactic
Cosmic Rays In the Heliosphere

e Because the sense of the particle drift changes
from one sunspot cycle to the next, one expects
changes in the cosmic-ray intensity and its
spatial distribution from one cycle to the next.

 For A<O, come inward along current sheet, out
toward the poles.

 For A>0, inward over the poles and out along
the current sheet.

* This leads to differing latitudinal gradients.



The galactic cosmic rays
enter the heliosphere
through a combination

diffusion (random walk)
and drift.

These motions are
counteracted by outward
convection and the
associated cooling by the
expansion of the wind.

The drift motions are very
significant.

Heliosphere

Drifts
Solar Wind =y

Random Walk ™"\,




Cosmic-Ray Transport in the Heliosphere

This is the current
solar cycle



[llustration of the latitudinal gradients for 1994 (A<0)

Model Calculation

Multi-spacecraft observations A>O0

Pl

ACR Oxygen Flux, 1994/152-212
Sitae! B osT0™ 06166 81560 ° 16066

50

AU, out of HG equator
o

_50 -

1 i L i 1 i i 1 “
=350 0 50
AU, in HG equator




The latitudinal distribution for A>0

Model Calculation
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The predicted time variation is also different for
the two signs of the magnetic field and associated
drift motions.
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This basic picture provides
a robust interpretation of
many observations.
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COUNTING RATE

NUMBER

The variation of > 3 Gev protons at Earth and

sunspots since 1950.
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Further Back: The Maunder Minimum

The Maunder Minimum is the name given to the period
spanning roughly the years 1645 to 1715, when
sunspots were exceedingly rare.

It was possibly associated with a period of cold.

The cosmic rays could only be measured by proxy.



400 Years of Sunspot Observations
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Data from Kocharov (1987) during the Maunder Minimum.

Note the longer period during the Maunder minimum.. -
VARIATIONS OF THE COSMIC-RAY FLUX |




More-recent data on the
Maunder Minimum in a
recent paper by Miyahara, et
al, 2008. This data has been
filtered to show only
variations > 18 years.
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Causes of Longer-Term Variations

Relating the longer-term variations to detailed physical
processes is more difficult.

It is clear that variations in the solar wind and its fluctuations
are a likely cause. But varyiations in the interplanetary
magnetic field are also likely to be very important.

Beyond some 50,000 years, interstellar causes remain likely.

Interstellar clouds and supernova blast waves undoubtedly
contributed to the variations seen at these time scales.



The recent record shows a clear relationship between the interplanetary
magnetic-field magnitude and the cosmic-ray intensity.
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An illustration of the effect
of varying the magnitude of
the interplanetary magnetic
field keeping everything else
constant.
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Radiation Hazards to Humans

 The “health threat from cosmic rays” is much
discussed.

 Itis the danger posed by cosmic rays to
astronauts, primarily for long-duration missions.

 They are one of the most important barriers
standing in the way of plans for interplanetary
travel by humans.



The solar minimum intensity of Galactic cosmic rays (for a 9-
month journey to Mars) is enough to exceed the current
radiation limits for astronauts in low Earth orbit

100

- Current yearly limit for low-Earth orbit

Dose Eq._
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" At 5 cm depth and behind 5 g/t:m2 Al shielding
3 | (based on values in Wilsonetal. 1997)
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Several strategies are being studied for ameliorating the effects of this
radiation hazard for planned human interplanetary spaceflight:

Spacecraftt can be constructed out of hydrogen-rich plastics, rather than
aluminum.

Material shielding has been considered. Liquid hydrogen, which would
be brought along as fuel in any case, tends to give relatively good
shielding, while producing relatively low levels of secondary radiation.
Therefore, the fuel could be placed so as to act as a form of shielding
around the crew. Water, which is necessary to sustain life, could also
contribute to shielding.

Electromagnetic fields may also be a possibility.
None of these strategies currently provides a method of protection that is

close to being sutficient, while using known engineering principles and
conforming to likely limitations on the mass of the payload.



The current solar minimum is anomalously long-lived.




The current sunspot minimum
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NASA - Bolar Wind Loses Power, Hits 50-year Low hitp:/fscience rasa. govheadlines/y20 08/23sen sol arwind hi
MNada - Bolar Wind Loses Power, Hits 50-year Low hitp://science rasa. gow/headlines/y2005/23sep_solarwind him

The change in pressure comes mainly from reductions in temperature and density. The

@ + EASAhHI?IK‘;AW . EIFLFAERfaH(; solar wind is 139% cooler and 20% less dense,
SCIENCE@NASA + Pagin a

:(P:zmmC;eNnAESTanol "What wa're seeing is a long term trend, a steady decrease in pressure that began
sometime in the mid-1990s," explains arik Posner, NASa's Ulysses Program Scientist in

FEATURE How unusual is this event?
. } 09.93.2 "It's hard to say. We've only been monitoring solar wind since the early years of the
Solar Wind Loses Power, Hits 50-year Low - Space Age—from the early 60s to the present," says Posner. "Over that period of time,

it's unigue, How the event stands out over centuries or millennia, howewver, is anybody's

) ) . . . . . guess. We don't have data going back that far."
+ Play audio | + Download 4udio | + Email to a friend | + Join mailing list

Flagging solar wind has repercussions across the entire solar system —beginning with

Sept. 23, 2008: In a briefing today at NASA headquarters, solar physicists announc the heliosphere.

that the solar wind is losing power.
The heliosphere is a bubble of magnetism
springing from the sun and inflated to
colossal proportions by the solar wind, Every
planet from Mercury to Pluto and beyond is
inside it, The heliosphere is our solar
system's first line of defense against galactic
cosmic rays. High-energy particles from bladk
holes and supernovas try to enter the solar
systemn, but most are deflected by the
heliosphere's magnetic fields.

Ulysses-swoops Right: The heliosphere. Click to view a
Solar Wind Dynamic Pressure larger im age showing the rest of the bubble,

"The average pressure of the solar wind has dropped more than 20% since the
mid-1990s," says Dave MoCorm as of the Southwest Research Institute in San Antonio
Texas. "This is the weakest it's been since we began monitoring solar wind almost 50
years ago."

tMcCom as is principal investigator for the SWOOPS solar wind sensor onboard the
Ulysses spacecraft, which measured the decrease. Ulysses, launched in 1990, drdes
sun in a unigque orbit that carries it over both the sun's poles and equator, giving
Ulysses a global view of solar wind activity:

"The solar wind isn't inflating the heliosphere as much asit used to," says McCom as.
"That means less shielding against cosmic rays."

In addition to weakened solar wind, "Ulysses also finds that the sun's underlying
magnetic field has weakened by more than 30% since the mid-1990s," says Posner.
"This reduces natural shielding even maore."

Unpublished Ulysses cosmic ray data show that, indeed, high energy (GeV) electrons, a
rinor but telltale component of cosmic rays around Earth, have jumped in number by
about 20%.

These extra particles pose no threat to people on Earth's surface, Our thick atmosphere
and planetary magnetic field provide additional layers of protection that keep us safe.

But any extra cosmicrays can have consequences, If the trend continues, astronauts on
the Moon or en route to Mars would get a higher dose of space radiation. Robotic space
probes and satellites in high Earth orbit face an increased risk of instrument
malfunctions and reboots due to cosmicray strikes. Also, there are controversial studies
linking cosmic ray fluxes to cloudiness and climate change on Earth, That link may be
tested in the years ahead.

Images:
EIT-SOHO
LASCO-C2-S0HO

Above: Global measurements of solar wind pressure by Ulysses, Green curves trace
solar wind in 1992-1998, while blue curves denote lower pressure winds in 2004-201
[Larger image]

Curiously, the sgeed of the million mph solar wind hasn't decreased much—aonly 3%,
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Cosmic-Ray Fe Intensity Reaches Record Levels in 2008-2009
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Spacecraft data show that in the current solar minimum the interplanetary magnetic field
strength and solar wind speed are at the lowest levels of the space era. Since the solar wind and its

magnetic field play key roles in the modulation of galactic cosmic rays, one expects that the GCR
intensity at Earth would reach record levels.



Now, consider the difference between the ACR and GCR,
illustrated below.

Observations from
ACE News 136 —
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The Different Response of ACR
and GCR to the Changes

The observations show that the ACR and GCR
behaved quite differently during the last minimum.

The GCR increases was as expected from the
faster transport in the weaker magnetic field.

The ACR are subject to the same change In
transport, so their decrease would suggest a
weaker source.

The smaller magnetic field and larger diffusion
coefficient would, indeed, produce a smaller ACR
source.

We can test this idea by using a simple model.



The radial intensity profile from a simple analytic spherically
symmetric profile.

Intensity of ACR and GCR vs Heliocentric Radius
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[llustrative ACR model spectra,
showing the ‘unfolding’ of the
energy spectrum with increasing
radius inside the shock and
decreasing intensity beyond.

Voyager 1 observations of

Cummings, Stone and Webber, 1996
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A Rediscovery of a Relevant
Old Observation

e Because it is increasingly recognized that the
alternative mechanisms have difficulties in the
Inner heliosheath, the proponents have moved
the site of ACR acceleration out to near the
heliopause.

e But there is a nearly forgotten observation which
argues strongly against this and for an ACR
origin near the termination shock.

 The data is from 1990-1996 Voyager data, taken
well inside the termination shock (McDonald, et
al, 2000, see also Jokipii and Kota, 2001.
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* Consideration of the recently proposed
scenarios leads to conclusions that:

— Direct acceleration in the electric field requires too
much distance for V~V..

— Statistical acceleration is far too slow.
— Reconnection is not ruled out, but requires high
anisotropies.

 Because the associated velocity and hence
electric field at the termination shock Is several
times larger (~400 km/sec as opposed ~20-60)
It can readily accelerate ACR In the avallable
time and space. It, however, has other
perceived difficulties.



Conclusions

Galactic cosmic rays dominate the average (over
scales of weeks) energetic-particle intensity at
energies >~ 100 MeV.

They vary on a continuum of time scales.

The physics of the variation is understood, but the
parameters are more-poorly understood.

The cosmic-ray variations on long time scales serve
as a proxy of solar variations on these time scales.

The current anomalous solar minimum will provide,
at a minimum, a further calibration of our
understanding.
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