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Edward Sabine 
(1788-1883)

• 1839+ : Helped establish global 
network of magnetic observatories

• 1852: Discovers correlation 
between disturbed times (@ Earth) 
and cycle of sunspots discovered 
previously by Schwabe (1843)

• 1861 – 1871: President of Royal 
Society (UK)

Phil. Trans. Royal Soc. 142, 103 (1852)



William Thomson 
aka. Lord Kelvin
(1824 – 1907)

• 1890 – 1895: President of Royal 
Society (UK)

• 1892 – publishes demonstration
that sunspots cannot [sic] influence 
Earth’s magnetic field

Nature 47:1206 p.106 (1892) 

i.e. a dipole



Stuff (plasma) – single system including Sun & Earth

Where did Kelvin go wrong? • wrong equations: 
``Maxwell’s”
• wrong magnetic fields
• too complex to model
• …
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The Sun’s corona

• A heat source

• Source of the plasma flow = solar wind

• Are these unrelated features?

(vol. I, Ch. 9)



Coronal (EUV) imaging – the basics:
• what you see is all the same T (1.5 x 106 K)
• bright = dense plasma – ne

2

• heating can* make plasma dense & thus bright
• heating is evidently magnetic

* if magnetic field lines are closed – magnetic bottle
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heat in

radiation

CH

outflow

Advective energy loss –

 

1
2 ρvv 2 + ρvw(ρ)

B large enough 
to restrict 
plasma motion: 
only along field 
lines

 

w(ρ)∝
γ

γ −1
ργ −1

>> radiative loss

specific enthalpy



heat in = Q

outflows

A(s)

 

Aρv 1
2 v 2 + w(ρ) + Ψ(s)[ ]Energy loss = = Q = fixed & given

mass loss fixed & unknown

 

w(ρ)∝
γ

γ −1
ργ −1 → cs

2 ln(ρ) + const.

Simple case: Isothermal … 

 

γ →1

 

→ 1
2 v 2 − cs

2 ln(v) − cs
2 ln[A(s)]+ Ψ(s) = const.

 

= f (v) + g(s) = const.

vcs

f(v)

Bernoulli’s law: 

 

Q
Ý M 

= const.



vcs

f(v)

 

f (v) = 1
2 v 2 − cs

2 ln(v)
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cone w/ vertical axis
A(s) ~ s2 s = r

subsonic flow

transonic flow

= rx



tube: 
horizontal nozzle 

 

g(s) = −cs
2 ln[A(s)] + Ψ(s)

Ψ(s) = const.

 

g(s) = −cs
2 ln[A(s)]

s

cs

subsonic flow

transonic flow

throat

saddle @ max. g(s)
@ throat of nozzle

v

max. inflow speed

admissible inflow speeds



tube: 
horizontal nozzle 

 

g(s) = −cs
2 ln[A(s)] + Ψ(s)

Ψ(s) = const.

 

g(s) = −cs
2 ln[A(s)]
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subsonic flow

v
Speeds up 
approaching 
constriction

Slows down 
in flaring exit
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Inflow = mass loss rate

set by 
back-pressure 
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tube: 
horizontal nozzle 

 

g(s) = −cs
2 ln[A(s)] + Ψ(s)

Ψ(s) = const.

 

g(s) = −cs
2 ln[A(s)]
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approaching 
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flaring exit
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transonic flow

max. inflow speed

occurs for 
back-pressure 
insufficient to 
keep flow 
sub-sonic



 

Fx = f (cs) + g rx( )=
Q
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g(r) rx

transonic flow

const. fixed by need to become transonic when 
external back-pressure is insufficient – i.e. 
vacuum around sun



transonic flow

const. fixed by need to become transonic when 
external back-pressure is insufficient – i.e. 
vacuum around sun

Mass loss rate is set 
by heating rate*

 density everywhere 
is set by mass loss rate

 density @ base is 
set by heating rate*…

… and it will be lower 
than density on closed 
loops w/ same heating 
(Why?)

 

Fx = f (cs) + g rx( )=
Q
Ý M 

 

Ý M =
Q
Fx

 

ρ(rx ) =
Ý M 

A(rx )cs

* … and geometry of flux tube A(s)



heat in

radiation

B large enough 
to restrict 
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lines
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outflow
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Different coronae 
from different 
magnetic topology: 
open vs. closed



Why are some field lines open & others closed?

Magnetic field dominates: 
nothing capable of countering its force so…

 

(∇ × B) × B = 0
⇒ ∇ × B = α B (i.e. || B)

simplest version:   α = 0   (by fiat)

 

⇒ ∇ × B = 0 ⇒ B = −∇χ potential field
(cf. electrostatics)

 

∇⋅ B = 0 ⇒ ∇2χ = 0 harmonic potential
(cf. electrostatics in vacuum)



 

B = −∇χ & ∇2χ = 0 potential field outside 
sphere   r=Ro

r=Ro

r=Rs



 

B = −∇χ & ∇2χ = 0 potential field outside 
sphere   r=Ro

r=Ro

r=Rs

 

(Bθ ,Bϕ ) = 0 ⇒
∂χ
∂θ

,
∂χ
∂ϕ

 

 
 

 

 
 = 0

⇒ χ(Rs,θ,ϕ) = 0

Field: purely radial @ r=Rs (by fiat)

 

Br(Ro,θ,ϕ) = −
∂χ
∂r r=Ro

Dirichlet

Observed  (Neumann)
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• Observe Br(θ,φ) 
@ photosphere

• decompose w/ spherical
harmonics

• coeffs.  Al,m



time

Br(θ,φ) ``measured’’ over 
entire sphere

• accumulate strips over 
27-day rotation

• hope that not much changes
• fill in poles (somehow)



PFSS model 
(potential field 
source surface)

Br(θ,φ) ``measured’’ over entire sphere
• accumulate strips over 27-day rotation
• hope that not much changes
• fill in poles (somehow)
• decompose w/ spherical harmonics
• coeffs.  Al,m

open 
field lines

closed field 
lines

Separatrix dividing 
open from closed


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Solar wind flows from 
open field crossing r=Rs
… the `source’ of the wind
 the `source surface’

vol. I ch. 4





10-4 T

10-5 T



Assumptions of the PFSS
• No currents in coronal field (simplest equilibrium)

• Field becomes open (radial) @ fixed radius  r=Rs

• Not much change during 27-day accumulation 

∇ × B = 0 Ro < r < Rs

Model distinguishing 
open/closed coronal field

 Field actually open will be 
source of solar wind, less 
dense & dark in EUX & SXR   



finding coronal holes

Dustin Hickey
Chris Lowder
Jiong Qiu & DWL



Open field in PFSS

dark in EUV
(coronal holes)





Summary

• Heliosphere is a system of (mostly) plasma coupling 
Sun, & planets

• Includes sources of plasma, magnetic field & heat

• Corona is a source of heat & solar wind

• Energy dissipation drives flow along open field lines: 
the solar wind

• Coronal field composed of closed & open field 
according to conditions of magnetic equilibrium
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