

Offset Tilted Dipole (poor) Approximation

Sabine Stanley's lecture on dynamos

Magnetic Potential 3-D harmonics $W = R_p \sum_{n=1}^{\infty} \sum_{n=1}^{n} \left(\frac{R_p}{n}\right)^{n+1} P_n^m(\cos\theta) \left(g_n^m \cos m\lambda + h_n^m \sin m\lambda\right),$

Decreasing with r to increasing power with n

n = 1 m = 0

 $P_0^0(\cos\theta) = 1$ $P_1^0(\cos\theta) = \cos\theta$ $P_1^1(\cos\theta) = -\sin\theta$ $P_2^0(\cos\theta) = \frac{1}{2}(3\cos^2\theta - 1)$ $P_2^1(\cos\theta) = -3\cos\theta\sin\theta$ $P_2^2(\cos\theta) = 3\sin^2\theta$ $P_3^0(\cos\theta) = \frac{1}{2}(5\cos^3\theta - 3\cos\theta)$

Same technique used to model cosmic microwave background

or interior of Sun with Helioseismology...

Earth - International Geomagnetic Reference Field

11th Generation International Geomagnetic Reference Field Schmidt semi-normalised spherical harmonic coefficients, degree n=1,13

	# in	unit	s nano	Tesla i	for IGRF	and de	finitiv	ve DGRF	main-fi	eld mod	els (de	gree n	=1,8 nar	oTesla/	year fo	r secul	ar vari	iation	(SV))	,						
	a/h ·	1	IGRF	IGRF	IGRF	IGRF	IGRF	IGRF	IGRF	IGRF	IGRF	DGRF	DGRF	DGRF	DGRF	DGRF	DGRF	DGRF	DGRF	DGRF	DGRF	DGRF	DGRF	DGRF	IGRF	SV 2010-15
	g 1	0 -	31543	-31464	-31354	-31212	-31060	-30926	-30805	-30715	-30654	-30594	-30554	-30500	-30421	-30334	-30220	-30100	-29992	-29873	-29775	-29692	-29619.4	-29554.63	-29496.5	11.4
	g 1	1	-2298	-2298	-2297	-2306	-2317	-2318	-2316	-2306	-2292	-2285	-2250	-2215	-2169	-2119	-2068	-2013	-1956	-1905	-1848	-1784	-1728.2	-1669.05	-1585.9	16.7
	h 1	1	5922	5909	5898	5875	5845	5817	5808	5812	5821	5810	5815	5820	5791	5776	5737	5675	5604	5500	5406	5306	5186.1	5077.99	4945.1	-28.8
	g 2	1	-677	-728	-769	-802	-839	-893	-951	-1018	-1106	-1244	-1341	-1440	-1555	-1662	-1781	-1902	-1997	-2072	-2131	-2200	-2267.7	-2337.24	-2396.6	-11.3
>	h 2	1	-1061	-1086	-1128	-1191	-1259	-1334	-1424	-1520	-1614	-1702	-1810	-1898	-1967	-2016	-2047	-2067	-2129	-2197	-2279	-2366	-2481.6	-2594.50	-2707.7	-23.0
Ľ.	g 2	2	924	1041	1176	1309	1407	1471	1517	1550	1566	1578	1576	1581	1590	1594	1611	1632	1663	1687	1686	1681	1670.9	1657.76	1668.6	2.7
$\mathbf{\times}$	h 2	2	1121	1065	1000	917	823	728	644	586	528	477	381	291	206	114	25	-68	-200	-306	-373	-413	-458.0	-515.43	-575.4	-12.9
Ð	g 3 a 3	1	-1469	-1494	-1524	-1559	-1600	-1645	-1692	-1740	-1790	-1834	-1889	-1944	-1992	-2038	-2091	-2144	-2180	-2208	-2239	-2267	-2288.0	-2305.83	-2326.3	-3.9
	h 3	î	-330	-357	-389	-421	-445	-462	-480	-494	-499	-499	-476	-462	-414	-404	-366	-333	-336	-310	-284	-262	-227.6	-198.86	-160.5	8.6
Ē	g 3	2	1256	1239	1223	1212	1205	1202	1205	1215	1232	1255	1274	1288	1289	1292	1278	1260	1251	1247	1248	1249	1252.1	1246.39	1231.7	-2.9
	h 3	2	3	34	62	84	103	119	133	146	163	186	206	216	224	240	251	262	271	284	293	302	293.4	269.72	251.7	-2.9
0	g 3 h 3	3	523	480	425	360	293	229	166	101	43	-11	-46	-83	-130	-165	-196	-223	-252	-297	-352	-427	-491.1	-524.72	-536.8	-8.1
\mathbf{O}	g 4	õ	876	880	884	887	889	891	896	903	914	944	954	958	957	957	952	946	938	936	939	940	932.3	920.55	912.6	-1.4
	g 4	1	628	643	660	678	695	711	727	744	762	776	792	796	800	804	800	791	782	780	780	780	786.8	797.96	809.0	2.0
	h 4	1	195	203	211	218	220	216	205	188	169	144	136	133	135	148	167	191	212	232	247	262	272.6	282.07	286.4	0.4
	g 4 h 4	2	-69	-77	-90	-109	-134	-163	-195	-226	-252	-276	-278	-274	-278	-269	-266	-265	-257	-249	-240	-236	-231.9	-225.23	-211.2	-8.9
	g 4	3	-361	-380	-400	-416	-424	-426	-422	-415	-405	-421	-408	-397	-394	-390	-395	-405	-419	-424	-423	-418	-403.0	-379.86	-357.1	4.4
	h 4	3	-210	-201	-189	-173	-153	-130	-109	-90	-72	-55	-37	-23	3	13	26	39	53	69	84	97	119.8	145.15	164.4	3.6
	g 4 b 4	4	134	146	160	178	199	217	234	249	265	-178	303	290	269	252	234	216	199	170	-299	-306	-303.8	100.00	-309.7	-2.3
	g 5	ō	-184	-192	-201	-211	-221	-230	-237	-241	-241	-253	-240	-229	-222	-219	-216	-218	-218	-214	-214	-214	-218.8	-227.00	-231.1	-0.5
	g 5	1	328	328	327	327	326	326	327	329	334	346	349	360	362	358	359	356	357	355	353	352	351.4	354.41	357.2	0.5
	h 5	1	-210	-193	-172	-148	-122	-96	-72	-51	-33	-12	3	15	16	19	26	31	46	47	46	46	43.8	42.72	44.7	0.5
	g 5 h 5	2	264	259	253	245	236	226	218	211	208	194	103	230	125	128	262	264	261	253	245	235	222.3	208.95	188.9	-1.5
	g 5	3	5	-1	-9	-16	-23	-28	-32	-33	-33	-20	-20	-23	-26	-31	-42	-59	-74	-93	-109	-118	-130.4	-136.54	-141.2	-0.7
	h 5	3	-33	-32	-33	-34	-38	-44	-53	-64	-75	-67	-87	-98	-117	-126	-139	-152	-151	-154	-153	-143	-133.1	-123.45	-118.1	0.9
	g 5	4	-86	-93	-102	-111	-119	-125	-131	-136	-141	-142	-147	-152	-156	-157	-160	-159	-162	-164	-165	-166	-168.6	-168.05	-163.1	1.3
	n 5 a 5	5	-124	-125	-126	-126	-125	-122	-118	-115	-113	-119	-122	-121	-114	-62	-56	-83	-48	-46	- 36	-55	-12.9	-13.55	-7.7	1.4
	h 5	5	3	11	21	32	43	51	58	64	69	82	80	78	81	81	83	88	92	95	97	107	106.3	103.85	100.9	-0.6
	g 6	0	63	62	62	61	61	61	60	59	57	59	54	47	46	45	43	45	48	53	61	68	72.3	73.60	72.8	-0.3
	g 6 h 6	1	-9	60 -7	-5	-2	55	54	53	53	54	57	-1	-9	-10	-11	-12	-13	-15	-16	-16	-17	-17.4	-20.33	-20.8	-0.3
	g 6	2	-11	-11	-11	-10	-10	-9	-9	-8	-7	6	4	3	1	8	15	28	42	51	59	68	74.2	76.74	76.0	-0.3
\mathbf{V}	h 6	2	83	86	89	93	96	99	102	104	105	100	99	96	99	100	100	99	93	88	82	72	63.7	54.75	44.2	-2.1
•	g 6	3	-217	-221	-224	-228	-233	-238	-242	-246	-249	-246	-247	-247	-237	-228	-212	-198	-192	-185	-178	-170	-160.9	-151.34	-141.4	1.9
	a 6	4	-58	-57	-54	-51	-46	-40	-32	-25	-18	-25	-16	-8	-1	4	2	1	4	4	3	-1	-5.9	-14.58	-22.9	-1.6
	ĥ 6	4	-35	-32	-29	-26	-22	-18	-16	-15	-15	-9	-12	-16	-20	-32	-37	-41	-43	-48	-52	-58	-61.2	-63.53	-66.3	-0.5
	g 6	5	59	57	54	49	44	39	32	25	18	21	12	7	-2	1	3	6	14	16	18	19	16.9	14.58	13.1	-0.2
	n 6 a 6	6	-90	-92	-95	-98	-101	-103	-104	-106	-107	-16	-12	-12	-113	-8	-112	-4	-108	-102	-96	-93	-90.4	-86.36	-77.9	1.8
	h 6	6	-69	-67	-65	-62	-57	-52	-46	-40	-33	-39	-30	-24	-17	-7	1	11	17	21	24	36	43.8	50.94	54.9	0.5
			4	- pa	ades	s lat	ter																			
				1	<u> </u>																					
	g 1. h 1	3 12	0		0 0 0 0) () (0 () ()) ()	0)	0 0) () (0 0) () (0	0 (0 () ()) ()		0 0	-0.5	-0.10	-0.3	0.0
	g 1	3 1 3	0	(0 0) d	5 (0 0) 0	0	i i)	0 0	5 0	0) (0	0 0) 0	0	0	0.1	-0.18	-0.3	0.0
	h 1	3 13	0	(0 0) () (0 () 0	0) ()	0 0) () 0) (0	0 () 0	0) 0	-0.9	-0.82	-0.8	0.0
									\rightarrow																	
	a	11	२ 1	२							1.11															
	9		ן ר			ht	tn·/	//	MI r	h a d	c na	าวว	ao	V/I A	C A	him	hod	liar	f htr	ml						

http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html

h 13 13

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-246X.2010.04804.x/full

Declination D in degrees in 2010

2011 now available!

International Geomagnetic Reference Field – IGRF2010

Inclination / in degrees in 2010

Total Intensity F in nT in 2010

Moon & Mars: All Crustal Remanent Magnetization

Did Moon ever have dynamo?Mars' dynamo died >3.5 BYA.

Re-Cap: Cavities, Current sheets, Fluxropes

Where would we find each of these in a magnetosphere?

Chat with your neighbors and quickly answer above question as best you can.

Slavin et al. 2010 MAGNETOPAUSE N CUSP NORTH LOBE N CUSP RAMATING RECOVERY PLANMA SHEET

s, cusi

MODERATE LOADING

SOUTH LOB

MAGNETOPAUS

GROUND STATE

Mercury: Extreme solar wind conditions -> exposed planet

OUTH LOBE

MAGNETOPAUSE

SOUTH LOB

MAGNETOPAUSE

EXTREME LOADING

Mars: Weak, irregular field -> bumpy surface + changing topology

 $=B_0^2 (R_p/r)^3$

SW ram pressure <=> internal magnetic field pressure

$$\rho_{sw} V_{sw}^2 = B_o^2 (R_p/r)^6 / 2\mu_o$$

BUT what about currents at the magnetopause? -> 2B_{dipole} $\rho_{sw} V_{sw}^2 = (2B_o)^2 (R_p/r)^6 / 2\mu_o$ Solve for $r => R_{MP}$ $R_{MP} / R_{planet} = 2^{1/3} \left[B_o^2 / 2\mu_o \rho_{sw} V_{sw}^2 \right]^{1/6}$

Yes, I am being a bit sloppy here...

Later this week David Burgess discusses the bow shock.

For more comprehensive treatment of magnetosheath, magnetopause (including details of the history) see 2012 HSS lecture by John Dorelli. http://www.vsp.ucar.edu/Heliophysics/pdf/ DorelliTerrestrialMagnetosphere.pdf

And lecture from 2011 from Toffoletto http://www.vsp.ucar.edu/Heliophysics/pdf/2011_Toffolettolecture.pdf

I am keen to compare planetary magnetospheres – and comparison with Earth.

Dipole Magnetic Field in Solar Wind SW Ram Pressure ←→ Magnetic Pressure

 $R_{MP} / R_{planet} \sim 1.2 \left[B_o^2 / 2 \mu_o \rho_{sw} V_{sw}^2 \right]^{1/6}$

Chapman-Ferraro Distance

${\bf R_{CF}}/{R_{p}} {\bf \sim 1.2} \; \{ {\bf B_{o}}^{2} \, / \; (2 \; \mu_{o} \; {\bf \rho_{sw}} \; V^{2}_{sw}) \}^{1/6}$

Quick chat with your neighbors....

- How does ρ_{sw} vary with distance from Sun? ~1/D²
- How does V_{SW} vary with distance from Sun? ~ constant
- How does $\{1/\rho_{sw} V_{sw}^2\}^{1/6}$ vary with distance? ~D^{1/3}

$\textbf{R}_{\textbf{CF}}/\textbf{R}_{p}\textbf{\sim}~1.2~\{\textbf{B}_{\textbf{o}}^{2}/2~\mu_{o}~\textbf{\rho}_{\textbf{sw}}~V^{2}_{\textbf{sw}}\}^{1/6}$

	Mercury	Earth	Jupiter	Saturn	Uranus	Neptune
B _o Gauss	.003	.31	4.28	.22	.23	.14
R _{CF} Calc.	1.4 R _M	10 R _E	46 R _J	20 R _S	25 R _U	24 R _N
R _M Obs.	1.4-1.6 R _M	8-12 R _E	63-92 R _J	22-27 R _S	18 R _U	23-26 R _N

Magnetospheres scaled by stand-off distance of dipole field

	M/M _E	MP _{Dipole}	MP _{mean}	MP _{Range}
Mercury	~8x10 ⁻³	1.4 R _M	1.4 R _M	
Earth	1	10 R _E	10 R _E	
Saturn	600	20 R _s	24 R _s	22-27* R _s
Jupiter	20,000	46 R _J	75 R _J	63-92 [#] R _J

Note bimodal average locations * Achilleos et al. 2008 # Joy et al. 2002

-> observed 100-50 Rj size of dayside magnetosphere

Vol. I Ch.10

Dungey Cycle

Dynamics at Earth driven by the solar wind coupling the Sun's magnetic field to the Earth's field

- Variable opening & closing rates
- Must be equal over time to conserve magnetic flux

The Dungey Cycle Solar wind driven magnetospheric convection* $\mathbf{E}_{\text{convection}} = -\zeta \mathbf{V}_{\text{SW}} \mathbf{X} \mathbf{B}_{\text{SW}}$

 ζ ~ efficiency of reconnection ~10-20%

crude approximation!!

E_{conv}~ constant in m'sphere

V_{convection}

 $\sim \zeta V_{SW} (R/R_{MP})^3$

(where 3 power assumes a dipole in reality, the flow is not uniform and the power somewhat less)

(*strictly speaking not convection but advection or circulation)

Reality = Messy & 3D

Dynamics

Dayside magnetopause

- Response to B_{SW} direction
- Solar wind ram pressure

Tail Reconnection

• Depends on recent history of dayside reconnection and state of plasmasheet

Space Weather!

$$V_{co} \sim \Omega \times R$$

 $V_{convection}$
 $\sim \zeta V_{SW} (R/R_{MP})^3$

Fraction of planetary magnetosphere that is rotation dominated is...

$$\frac{R_{pp}}{R_{MP}} \frac{R_{MP}}{\Omega} \frac{1}{2} \frac{\zeta V_{SW}}{M^{2}} \frac{1}{2} \frac$$

Where r_p =planetary radius μ = magnetic moment of planet B_o R_p³

 $\mathbf{V}_{co} \sim \mathbf{\Omega} \times \mathbf{R}$ **V**_{convection} $\sim \zeta V_{SW} (R/R_{MP})^3$

What if... How would location of plasmapause change?

- Reconnection more/less efficient at harnessing the solar wind momentum
- 2. Planet's spin slows down

Solar-wind vs. Rotation-dominated magnetospheres

6.7 350

95

Assumptions:

1. Planet's rotation coupled to magnetosphere

2. Reconnection drives solar wind interaction

Plasma Sources

	Mercury	Earth	Jupiter	Saturn	Uranus	Neptune
N _{max} cm ⁻³	~1	1- 4000	>3000	~100	~3	~2
Comp- osition	H ⁺ Solar Wind	O+ H+ Iono- sphere	On+ Sn +	O ⁺ H ₂ O ⁺ H ⁺ Enceladus	H+ Iono- sphere	H ⁺ N ⁺ Triton Iono- sphere
Source kg / s	?	5	700- 1200	70- 700	~0.02	~0.2

Earth Sources of Plasma (5 kg/s): Solar Wind + ionosphere mixed (over the poles) into magnetotail and convected sunward

Earth Plasma Flux 5 kg/s

Substorm Energy Storage solar wind kinetic energy converted to magnetic energy

Terry Forbes Friday Lecture
Evolutionary Phases for Substorm Plasmoid

- Open-closed boundary
- Stronger on nightside
- Highly variable

Terry Forbes Friday Lecture

lo Plasma torus

- Total mass 2 Mton
- Source 1 ton/s
- Replaced in 20-50 days

- Strong electrodynamic interaction
- Mega-amp currents between Io and Jupiter

- Plasma interaction with lo's atmosphere
- Heated atmosphere escapes
- ~20% plasma source local

Ion Pick Up

The magnetic field couples the plasma to the spinning planet Ion gains large gyromotion -> heat

Plasma Torus Mass Flux

Radial Transport

In rotating magnetosphere If fluxtube A contains more mass than B – they interchange

Rayleigh-Taylor instability where centrifugal potential replaces gravity If $\beta \ll 1$, interchange of A and B does not change field strength.

Radial Transport

In rotating magnetosphere **If fluxtube A contains more mass than B – they interchange**

You can think of centrifugally-driven fluxtube interchange as a kind of diffusion.

- How will density vary with distance from the source?
- How will diffusion rate depend on *gradient* of density?

Radial Transport

In rotating magnetosphere If fluxtube A contains more mass than B – they interchange

If $\beta \ll 1$, interchange of A and B does not change field strength.

Jupiter's 3 Types of Aurora

Steady Main Auroral Oval Variable Polar Aurora

Aurora associated with moons

Jupiter's Aurora -The Movie

ŝ

Fixed magnetic coordinates rotating with Jupiter

Clarke et al. Grodent et al. HST

Main Aurora

- Shape constant, fixed in magnetic co-ordinates
- Magnetic anomaly in north
- Steady intensity
 ~1° Narrow
 Clarke et al., Grodent et al. HST

Coupling the Plasma to the Flywheel

- As plasma from lo moves outwards its rotation decreases (conservation of angular momentum)
- Sub-corotating plasma pulls back the magnetic field
- Curl **B** -> radial current J_r
- J_r x B force enforces rotation

Field-aligned currents couple magnetosphere to Jupiter's rotation

Cowley & Bunce 2001

The aurora is the signature of Jupiter's attempt to spin up its magnetosphere

Parallel electric fields: potential layers, $\phi_{||}$, "double layers"

Where is the clutch slipping?

Mass loading

A - Between deep and upper atmosphere?
B - Between upper atmosphere and ionosphere?
C - Lack of current-carriers in magnetosphere-> E_{II}?

Ionosphere - Sets boundary conditions for magnetospheric dynamics

Magnetospheric Factors: $\dot{M} \phi_{\parallel}$ *Ionosphere/Thermosphere factors:* Σ_{p} winds, chemistry, heating, radiation, etc;

Communication breaks down ~25R_J. Magnetosphere & atmosphere stop talking > 60 R_J

Jupiter

High mass loading

Medium mass loading

Low mass loading

Nichols 20

How is information transmitted along magnetic field lines?

De-Coupling - 3

Azimuthal Flow Profile

Combining V_r and V_{azimuthal} we get....

Pattern of Net Momentum Flux

Alfven Radius

 Beyond ~60 R_J material spirals away from Jupiter in 10s of hours

Radial transport is still diffusive:
Centrifugally-driven fluxtube interchange

Solar Wind Stresses Overcome Rotation

Add Maxwell stresses from solar wind interaction

Stresses from magnetic shear on boundary

Vasyliunas Cowley et al. Southwood & Kivelson

Reconnection is reduced in the outer solar system:

- weaker solar fields
- shear boundaries
- strong change in β

Can small-scale boundarylayer processes act like viscosity?

> Shear-driven Kelvin-Helmholtz instability

Arrives at Jupiter 2016!

Polar Magnetosphere

Juno passes directly through auroral field lines

Measures particles precipitating into atmosphere creating aurora

Plasma/radio waves reveal processes responsible for particle acceleration

UV & IR images provides context for *in-situ* observations

Uranus

- -Highly asymmetric,
- -Highly non-dipolar
- -Complex transport (SW + rotation)
- -Multiple plasma sources (ionosphere + solar wind + satellites)

Mercury & Ganymede

Mercury - Magnetic field detected by *Mariner 10* in 1974

Ganymede - Magnetic field detected by *Galileo* in 1996

B_{surface} ~ 1/100 Earth Diameter of Earth

Brain & Helekas 2012

Possible mechanisms for Mars' aurora

Total auroral precipitated power ~mW m⁻²

- •Total energy flux ~mW m⁻²
- •Outflow estimates $10^{23-25} s^{-1}$
- •Probably higher for early Mars

Total atmospheric escape ~ 1 ton/hour - ???

The MAVEN Spacecraft

MAVEN:

- Launch Nov. 2013
- Orbits Mars Sept. 2014-2016
- PI Bruce Jakosky
 U of Colorado

How Magnetic Fields Could Play a Role in Exoplanet Atmospheres

- Signature of internal state
- Deflection of energetic particles from planet
- Delivery of energetic particles to the surface
- Delivery of energy to atmosphere – bombardment, joule heating
- Stripping of outer atmosphere

Bottom line: Atmosphere protects biota from nasty energetic particles. The magnetosphere (mostly) protects the atmosphere.

Planetary Magnetospheres See vol. III ch. 7 & vol. I ch. 13

Summary

- Diverse planetary magnetic fields & magnetospheres
- Earth, Mercury, Ganymede magnetospheres driven by reconnection
- Jupiter & Saturn driven by rotation & internal sources of plasma
- Uranus & Neptune are complex need to be explored!

Stay tuned.... MAVEN mission to Mars Juno mission to Jupiter!

