Cosmic Ray Transport in the
Heliosphere

J. Giacalone
University of Arizona

Heliophysics Summer School, Boulder, CO, July 16, 2013



Outline

* Lecture 1: Background
* The heliosphere
* Cosmic Rays in the heliosphere
e Record-intensity cosmic rays during the last sunspot minimum
* Has Voyager 1 entered the interstellar medium?

* Lecture 2: Basic theory of charged-particle transport
* Equations of motion, large-scale drifts, resonances
e Restricted motions
* Diffusion, Convection, Energy Change
* The Parker transport equation

* Recitation/Problem Sets: Applications



Spectra of Energetic Oxygen Nuclei
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The distribution function

* We define the phase-space distribution function f as the
number of particles within a given phase-space volume

* Phase space consists of 6 dimensions: 3 spatial
coordinates, 3 velocity coordinates

* The normalization is such that the number density, n(r,1),
Is given by:



Cartesian coordinates

Note that this last form is most convenient for cosmic rays in most situations
because cosmic rays are observed to have very little anisotropy meaning that /'
can be taken as independent of ¢(pitch angle) and ¢ (phase angle)



The differential intensity

Cosmic-Ray Spectrum

* Observers commonly represent their data \ '
using the differential intensity, or IR o Pl
sometimes referred to simply as “the el N
energy spectrum.” It is essentially the
flux per energy, per solid angle and is
related to the phase-space distribution
function by
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Forces acting on energetic charged particles

e Lorentz force

dp q
= qF + —w £ B
dt C

* Where w = p/m is the particle velocity vector, and p is the
momentum. g is the particle’s charge, E and B are the electric and
magnetic fields, respectively.

e Other forces are generally small, but can be added as needed (e.g.
gravity, radiation pressure, etc.)



Constant Electric and

Magnetic Fields

Case A: B = constant
E=0

One gets simple gyromotion
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Constant Electric and
Magnetic Fields Case

Case A: B = constant
E = constant

One gets gyromotion + drift
(the electric field drift)
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Varying E and B fields

Case 1: Scale of variation >> gyroradius of
pprfir\lac
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Varying E and B fields

Case 2: Scale of variation = gyroradius of
particles
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* A “resonance” can occur such that the particles pitch angle is reversed. This is much like
a “scattering” event in scattering theory. The resonance condition is £wu={), where &

is the wavenumber of the fluctuation, W is the particle speed, # is the cosine of the pitch
angle, and () is the particle cyclotron frequency.



A charged particle moving in a turbulent magnetic field

(numerical integration)
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Restrictions on particle motions imposed by
artificially limiting the dimensionality of the fields

Particle
Trajectory

Field Lines

e Charged particles are strictly

2-D
Magnetic Field

tied to magnetic lines of force

in 1 and 2D electric and
magnetic fields
* This can be proven rigorously

and follows directly from the
equations of motion

Trajectoery Field Lines

* This is an artificial and

unphysical constraint on

charged-particle motion!
* Be aware!

3-D
Magnetic Field




Spatial Diffusionin 1D

* If there are enough “scattering” events then the resulting motion is similar to
that of a random walk in space. This type of motion is commonly described as
“diffusive.” The distribution of a collection of particles is said to be “isotropic”
i.e. the distribution function is independent of pitch angle and phase angle. Its
evolution can be described with a diffusion equation, which, in 1D is given by:

¢ _@ @

@ @ @

K is the “diffusion coefficient” and is related to the magnetic-field fluctuations
for the case of charged particles moving within a turbulent magnetic field (see
Jokipii, ApJ, 1966). It is related to the mean-free path of scattering by:

= (1=3)w,



* Consider an “impulsive” release of particles at the origin. That is,
f10,£)=6(¢). The solution to the 1D diffusion equation for this situation
is given by:

N o X
exp i —
47%- t 4- t

f(x;t) =

* Where N, is the number of particles

* The solution for fas a function of x
for various times resembles that
shown at right




The distribution as a function of time at a
particular spatial location away from the
source
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* This resembles many large solar-energetic particle events
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Theoretical fit, using equation 122, to the Deep River neutron

monitor data for the November 15, 1960, event. 6o is the angle between the
flare and the foot of the average magnetic field line passing through the

point of observation [Burlaga, 19671,



Diffusion in multi-dimensions

e The 2D diffusion equation is given by (ignoring crossed terms)
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* Or, in terms of coordinates along and across a mean magnetic
field
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In addition to diffusion, there are other important
collective effects on charged particles: they include

* Advection
(arises because the “scattering
U ¢r f centers” are moving with the bulk
plasma flow)
* Energy Change
@f (arises because of scattering in
—r CcU — converging or diverging flows)

3 @p



Parker’s energetic-particle
transport equation
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Basic Physics of Cosmic-Ray Diffusion

Particle Trajectory
Scattering

—p-<i> Dijffusion coefficients are related to

<X = . g
‘é«;,'. B the magnetic field power spectrum,
ey 4
= \\“ﬂ‘ as has been discussed by many
\%;!3!.- authors: quasi-linear theory
—

* For example, the rate of scattering depends on the power at the scale of the
particle gyroradius (i.e. a resonant condition)
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Power spectra in space
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Parallel Diffusion

* Generally, the observed A is larger The “Palmer consensus”

than the prediction from QLT using (Palmer, 1982)
standard slab turbulence (1D) B T
~ 10.000¢F
e Bieber et al. (1994) argued that IMF 5 f
turbulence has a significant % oo
contribution from turbulence that g U _'
does not effectively scatter particles s ootop P
(so-called “composite” turbulence "~ 0.001 _1 et
which is a combination of slab + 2D) T mgay o

Bieber et al., 1994
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* The transport of particles 10 |
normal to the magnetic field ‘ Hard Sphere
has been more difficult to 1e
understand. o b S
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