
Heliophysics School 2014 1 

 
   
Stellar dynamos 
  
Paul Charbonneau, Université de Montréal 
 
Magnetohydrodynamics (ch. I.3) 
Simulations of solar/stellar dynamos (ch. III.5, +) 
Mean-field electrodynamics (ch. I.3, III.6) 
 
From MHD to simpler dynamos (ch. I.3, III.6)  
Solar and stellar dynamo models (ch. III.2, III.6) 
Introducing the lab 
 

 



Heliophysics School 2014 2 

The solar magnetic cycle 

I.2.2 
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The Sun as a star 

…but, the amplitude of Ca H+K emission is difficult to relate 
quantitatively to measures of « magnetic cycle amplitude »; 
the cycle period, in contrast,  is (probably) unambiguous. 

Emission in the cores of the H and K spectral lines of Ca offers 
a good proxy of magnetic activity… 
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Magnetohydrodynamics 
 [ Section I.3.2 ] 
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Maxwell’s equations 

I.3.2 
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From Maxwell to MHD (1) 

Step 1: Drop displacement current to revert to the original 
            form of Ampère’s Law: 

Step 2: Write down Ohm’s Law in a frame co-moving with 
             the fluid: 

Step 3: Non-relativistic transformation back to the laboratory 
             frame of reference: 

I.3.2 
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From Maxwell to MHD (2) 
Step 4: Combine with Ampère’s Law to express the electric 
             field as: 

Step 5: Substitute into Faraday’s Law to get the justly famous 
             magnetohydrodynamical induction equation: 

where we defined the magnetic diffusivity as: 

I.3.2 
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Scaling analysis (1) 

Suppose we can estimate, a priori, a typical time scale and 
a typical length scale over which both the flow and magnetic field 
vary appreciably; by replacing differential operators in the MHD 
equation by the inverse of these scales, we get: 

The ratio of the two terms on the RHS defines a dimensionless 
quantity known as the magnetic Reynolds number: 

I.3.2.3 
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Astrophysical parameter regimes 

Magnetic diffusion would appear entirely negligible 
in most astrophysical systems; but beware… 
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Scaling analysis (2) 

Advection timescale Diffusion timescale 

Rm >> 1 Rm << 1 
 

108-1010yr for sun! « Ideal MHD » 

I.3.2.3 
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The MHD equations 

I.3.2.1 
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Dynamo problems 

The kinematic dynamo problem:  

« To find a flow u that can lead to field amplification when 
substituted in the MHD equation » 

« To find a flow u that can lead to field amplification when 
substituted in the MHD equation, while being dynamically 
consistent with the fluid equations including the Lorentz force » 

« To find a flow u that leads to a magnetic field amplification 
and evolution in agreement with observational inferences for 
the Sun and stars » 

The self-excited dynamo problem:  

The solar/stellar dynamo problem(s):  

HARD 

HARDEST 

MUCH HARDER 

TURBULENCE 

TURBULENCE 

???????? 

I.3.2.3 
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Simulations of solar/stellar dynamos 
 [ Chapter III.5, + extra ] 
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Selected milestones 

Browning et al. 2006: Demonstrate the importance of an underlying, 
convectively stable fluid layer below the convection zone in producing  
a large-scale magnetic component in the turbulent regime. 

Brun et al. 2004: Strongly turbulent MHD simulation, producing copious 
small-scale magnetic field but no large-scale magnetic component. 

Glatzmaier 1984, 1985: Anelastic model including stratification, large-scale 
fields with polarity reversals within a factor 2 of solar period; tendency for 
poleward migration of the large-scale magnetic field. 

Gilman 1983: Boussinesq MHD simulation, producing large-scale magnetic fields 
with polarity reversals on yearly timescale; but non-solar large-scale organization. 

Brown et al. 2009, 2010: Obtain irregular polarity reversals of thin, intense 
toroidal field structure in a turbulent simulation rotating at 5X solar. 

Nelson et al. 2012, 2013: Autonomous generation of buoyantly rising flux-ropes 
structures showing sunspot-like emergence patterns.  

Ghizaru et al. 2010: Obtain regular polarity reversals of large-scale magnetic 
component on decadal timescales, showing many solar-like characteristics. 
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Simulation framework 

Simulate anelastic convection in thick, 
rotating and unstably stratified fluid shell 
of electrically conducting fluid, overlaying 
a stably stratified fluid shell. 
 
Recent such simulations manage to reach 
Re, Rm ~102-103, at best; a long way from 
the solar/stellar parameter regime. 
 
Throughout the bulk of the convecting 
layers, convection is influenced by 
rotation, leading to alignment of  
convective cells parallel to the rotation axis. 
 
Stratification leads to downward pumping 
of the magnetic field throughout the  
convecting layers. 
 
 III.5.4 
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MHD simulation of global dynamos  
[ Ghizaru et al. 2010, ApJL, 715, L133 ] 

Electromagnetic induction by internal flows is the engine powering the solar 
magnetic cycle. The challenge is to produce a magnetic field well-structured 
on spatial and temporal scales much larger/longer than those associated 
with convection itself. This is the magnetic self-organisation problem.  

Temperature perturbation Radial flow component Radial magnetic field component 

http://www.astro.umontreal.ca/~paulchar/grps  > Que faisons nous > Simulations MHD 

17 
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Kinetic and magnetic energies 

(120 s.d.=10 yr) 
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Simulated magnetic cycles (1) 

Large-scale organisation of the magnetic field takes place primarily 
 at and immediately below the base of the convecting fluid layers 
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Magnetic cycles (1) Zonally-averaged B
phi

 at r/R =0.718 

  Zonally-averaged B
phi

 at -58o latitude 
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Characteristics of simulated cycles (1) 
[ Passos & Charbonneau 2014, A&A, in press ]  

Define a SSN proxy, measure cycle characteristics (period, 
amplitude…) and compare to observational record. 
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Characteristics of simulated cycles (2) 
[ Passos & Charbonneau 2014, A&A, in press ]  

r =  
0.957/0.947 
[ 0.763/0.841 ] 

r =  
-0.465/-0.143 
[ 0.185/-0.117 ] 

r =  
0.688/0.738 
[ 0.322/0.451 ] 

r =  
-0.395/-0.147 
[ -0.552/-0.320 ] 
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Successes and problems 

KiloGauss-strength large-scale magnetic fields, antisymmetric about 
equator and undergoing regular polarity reversals on decadal timescales. 

Cycle period four times too long, and strong fields concentrated 
at mid-latitudes, rather than low latitudes.  

Reasonably solar-like internal differential rotation, and solar-like 
cyclic torsional oscillations (correct amplitude and phasing). 

Internal magnetic field dominated by toroidal component and 
strongly concentrated immediately beneath core-envelope interface.  

Well-defined dipole moment, well-aligned with rotation axis, 
but oscillating in phase with internal toroidal component.  

On long timescales, tendency for hemispheric decoupling, and/or 
transitions to non-axisymmetric oscillatory modes. 
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Stellar cycles (1) 
B.P. Brown et al. 2011, Astrophys. J., XXX, YYY  

ASH LES: at solar rotation 
rate and luminosity, no 
large-scale field produced; 
 
At 3X solar rotation, steady 
axisymmetric large-scale 
field is produced; 
 
At 5X solar rotation, irregular 
polarity reversals occur. 
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Convection in main-sequence star (1) 

In « cool » stars, the convective envelope deepens as the surface 
temperature/mass decreases; stars are fully convective around M5 

I.2.3.1 
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Convection in main-sequence stars (2) 

In « hot » stars, the convective envelope disappears, but a convective 
core builds up as mass/effective temperature increases 

I.3.2.3 
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3D MHD in fully convective stars (1) 
Browning 2008, Astrophys. J., 676, 2362 

[ Azimuthally-averaged toroidal magnetic component, in meridional plane ] 
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3D MHD core dynamo action (2) 
Brun, Browning & Toomre, 2005, Astrophys. J., 629, 461 

[ Azimuthally-averaged toroidal magnetic component, in meridional plane ] 
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The magnetic self-organization conundrum  

How can turbulent convection, a flow with a length scale <<R 
and coherence time of ~month, generate a magnetic component 
with scale ~R varying on a timescale of ~decade ?? 

Mechanism/Processes favoring organization on large 
spatial scales: 1. rotation (cyclonicity); 2. differential rotation 
(scale ~R); and 3. turbulent inverse cascades. 
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Rotation and differential rotation (1) 

Vertical (radial) flow velocity, in Mollweide projection 
[ from Guerrero et al. 2013, Astrophys. J., XXX, YYY ] 

No rotation Rotation at solar rate 

III.5.2, III.5.5 
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Rotation and differential rotation (2) 

Angular velocity profiles, in meridional quadrant 

Helioseismology HD simulation MHD simulation 

Differential rotation in the Sun and solar-type stars is powered 
by turbulent Reynolds stresses, arising from rotationally-induced 

anisotropy in turbulent transport of momentum and heat 

III.5.5 
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Mean-field electrodynamics 
and dynamo models 

[see also Rempel chapter, vol. 1] 
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The basic idea 
[ Parker, E.N., ApJ, 122, 293 (1955) ]  

Cyclonic convective updraft/downdrafts 
acting on a pre-existing toroidal magnetic 
field will twist the fieldlines into poloidal 
planes (in the high Rm regime) 

The collective effect of many such 
events is the production of an electrical 
current flowing parallel to the background 
toroidal magnetic field; such a current 
system contributes to the production of 
a poloidal magnetic component 
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The turbulent EMF (1)  

Substitute into MHD induction equation and apply averaging operator: 

with : TURBULENT ELECTROMOTIVE FORCE ! 

Separate flow and magnetic field into large-scale, « laminar »  
component,  and a small-scale, « turbulent » component: 

Assume now that a good separation of scales exists between 
these two components, so that 

I.3.4 
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The turbulent EMF (2)  

Now, the whole point of the mean-field approach is NOT to have to deal 
explicitly with the small scales; since the PDE for b is linear, with the 
term                          acting as a source; therefore there must exit a 
linear relationship between b and B, and also between B and               ; 
We develop the mean emf as  

Where the various tensorial coefficients can be a function of       , 
of the statistical properties of u, on the magnetic diffusivity, but 
NOT of       . 

Specifying these closure relationships  
is the crux of the mean-field approach 

I.3.4 

I.3.4 
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The alpha-effect (1)  

Consider the first term in our EMF development: 

If u is an isotropic random field, there can be no preferred direction 
in space, and the alpha-tensor must also be isotropic: 

This leads to: 

The mean turbulent EMF is parallel  
to the mean magnetic field! 

This is called the « alpha-effect » 

I.3.4.3 
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The alpha-effect (2)  
Computing the alpha-tensor requires a knowledge of the statistical 
properties of the turbulent flow, more precisely the cross-correlation 
between velocity components; under the assumption that b << B, 
if the turbulence is only mildly anisotropic and inhomogeneous, the 
so-called Second-Order Correlation Approximation leads to 

The alpha-effect is proportional to the fluid helicity! 

If the mild-anisotropy is provided by rotation, and the inhomogeneity 
by stratification, then we have 

where       is the correlation time for the turbulence. 

I.3.4.3 
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The alpha-effect (3) 
Positive in N-hemisphere, peaking 
at high latitudes; sign change near 
the base of convecting fluid layer. 

m s-1  

Antisymmetric about equatorial 
plane.  

Roughly proportional to  
the negative of kinetic  
helicity of turbulent flow  
component !! 
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Turbulent pumping (1) 
Turbulent pumping is a basic physical effect arising in inhomogeneous, 
anisotropic  turbulence; mathematically, it shows up as the antisymmetric  
part of the alpha-tensor relating the turbulent EMF to the mean 
magnetic field: 

Extracting the symmetric part of the tensor yields: 

where 

acts as a velocity in the mean-field dynamo equations. For mildly 
anisotropic, inhomogeneous turbulence: 

I.3.4.3 
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Turbulent pumping (2) 
Poleward transport of surface  
magnetic field by turbulent pumping; 
speed in range 1-3 m s-1 above 
+/- 45o latitudes 

m s-1  

Equatorward transport of deep  
magnetic field by turbulent pumping 
between +/- 15 and 60o latitudes; 
speed 1-2 m s-1   
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Turbulent pumping (3) 
Upward transport of magnetic field 
by turbulent pumping in subsurface 
layers; speed exceeding 1 m s-1  
above +/- 60o latitudes 

m s-1  

Downward transport of magnetic field 
by turbulent pumping in bulk of deep 
convection zone; speed exceeding 
1 m s-1 between +/- 15 and 60o 
latitude 
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Turbulent diffusivity  
Turn now to the second term in our EMF development: 

In cases where u is isotropic, we have                       , and thus: 

The mathematical form of this expression suggests that     can 
be interpreted as a turbulent diffusivity of the large-scale field. 
for homogeneous, isotropic turbulence with correlation time     , 
it can be shown that 

This result is expected to hold also in mildly anisotropic, mildly  
inhomogeneous turbulence. In general, 

I.3.4.3 
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Active region decay (1) 

Synoptic magnetogram courtesy D. Hathaway, NASA/MSFC 
[ http://solarscience.msfc.nasa.gov/images/magbfly.gif ] Toroidal flux emerging in active regions in one cycle: ~1017 Wb 

Peak polar cap flux: ~1014 Wb 

III.2.2.1 
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(2b) 
Sunspot pairs are the 
photospheric manifestation of an 
emerging, formerly toroidal 
magnetic flux rope generated in 
the deep interior ; 

after surface decay and 
transport by diffusion, 
differential rotation, and the 
surface meridional flow… 
 

…an axisymmetric dipole 
moment is produced; this 
Babcock-Leighton mechanism 
produces a poloidal field from a 
toroidal component. 
 

III.6.2.2 
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Active region decay (3) 

Zonal means 
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Active region decay (3) 
[ Simulation of surface magnetic flux evolution by A. Lemerle ] 

The Babcock-Leighton 
mechanism is definitely 
seen operating at the  
solar photosphere! But, 
does it really feed back 
into the dynamo loop ? 

III.2.2.1.4 
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Formation of magnetic flux strands (1) 
[ Nelson et al. 2013, Astrophys. J., 762: 73 ] 

Recent, very high resolution 3D MHD simulations  of solar convection 
Have achieved the formation of flux-rope-like super-equipartition-strength  
« magnetic strands » characterized by a significant density deficit in their 
core; ripped from the parent large-scale structure by turbulent entrainement, 
subsequent buoyant rise ensues. 
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Formation of magnetic flux strands (2) 
[ Nelson et al. 2014, Solar Phys., 289, 441 ] 

The strands 
« remember » 
their origin ! 

The strands develop a pattern 
of East-West tilt similar to that 
inferred obervationally for the sun 
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From MHD to simpler dynamos 
 [ Sections I.3.4, I.3.5, III.6.1-3 ] 
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The MHD equations 
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Model setup  

Solve MHD induction equation in spherical polar coordinates 
for large-scale (~R),  axisymmetric magnetic field in a sphere 
of electrically conducting fluid: 

Evolving under the influence of a steady, axisymmetric 
large-scale flow: 

Match solutions to potential field in r > R . 

III.6.1 
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Kinematic axisymmetric dynamo 
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Differential rotation 

Fast 

S
lo

w
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Shearing by axisymmetric 
differential rotation 

I.3.3.7 
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Kinematic axisymmetric dynamo 
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Meridional circulation 
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Kinematic axisymmetric dynamos 
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Poloidal source terms 

1. Turbulent alpha-effect 
 

2. Active region decay (Babcock-Leighton mechanism) 
 
3. Helical hydrodynamical instabilities 

 
4. Magnetohydrodynamical instabilities 
     (flux tubes, Spruit-Tayler) 

III.6.2 
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Solar and Stellar dynamo models  
 [ Sections III.2, III.6 ] 
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Models based on 
the turbulent alpha-effect 
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Scalings and dynamo numbers 

Three dimensionless groupings 
have materialized: 

Length scale: solar/stellar radius: 
Time scale: turbulent diffusion time: 0 

III.6.2.1 
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The mean-field zoo 

The alpha-effect is the source of both poloidal and toroidal 
magnetic components; works without a large-scale flow! 
planetary dynamos are believed to be of this kind. 

Both the alpha-effect and differential rotation shear contribute to 
toroidal field production; stellar dynamos could be of this kind if 
differential rotation is weak, and/or if dynamo action takes place 
in a very thin layer. 

Rotational shear is the sole source of the toroidal component; 
the alpha-effect is the source of only the poloidal component.  
the solar dynamo is believed to be of this kind. 

I.3.4.6 
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Linear alpha-Omega solutions (1) 

Choice of alpha: 

Solve the axisymmetric kinematic mean-field alpha-Omega dynamo 
equation in a differentially rotating sphere of electrically conducting 
fluid, embedded in vacuum; in spherical polar coordinates: 
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Linear alpha-Omega solutions (2) 

The growth rate, frequency, 
and eigenmode morphology 
are completely determined 
by the product of the two 
dynamo numbers 
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Linear alpha-Omega solutions (3) 

Positive alpha-effect Negative alpha-effect 
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Linear alpha-Omega solutions (4) 

Time-latitude « butterfly » diagram 

Equivalent in axisymmetric numerical model: constant-r 
cut at r/R=0.7, versus latitude (vertical) and time (horizontal) 

[ http://solarscience.msfc.nasa.gov/images/bfly.gif ] 

http://solarscience.msfc.nasa.gov/images/bfly.gif�
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Linear alpha-Omega solutions (5) 

III.6.2.1.1 



Heliophysics School 2014 68 

Nonlinear models: alpha-quenching (1)  

We expect that the Lorentz force should oppose 
the cyclonic motions giving rise to the alpha-effect;  
 
We also expect this to become important when the 
magnetic energy becomes comparable to the  
kinetic energy of the turbulent fluid motions, i.e.: 
 
 
 
This motivates the following ad hoc expression 
for « alpha-quenching »: 

III.6.2.1.2 
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Nonlinear models: alpha-quenching (2) 
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Nonlinear models: alpha-quenching (3) 

The magnetic diffusivity is the primary determinant of the cycle period 
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Nonlinear models: alpha-quenching (4) 
Magnetic fields concentrated at too high latitude; 
Try instead a latitudinal dependency for alpha: 
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Alpha-Omega dynamos  
with meridional circulation (1) 

Equatorward propagation of the deep toroidal field is now due  
to advection by the meridional flow, not « dynamo waves » effect. 

III.6.2.1.4 
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Models with meridional circulation (2) 
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Models with meridional circulation (3) 
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Models based on 
the Babcock-Leighton mechanism 
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Babcock-Leighton dynamo model (1)  
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Babcock-Leighton dynamo model (2) 

A Babcock-Leighton source term for the axisymmetric 
dynamo equations: 

Concentrated in surface layers 

Non-local in B Peaking at mid-latitudes 

The source term operates 
only in a finite range of  
toroidal field strengths. 

III.6.2.2 
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Babcock-Leighton dynamo model (3) 

The turnover time of the meridional flow 
 is the primary determinant of the cycle period 
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Babcock-Leighton dynamo model (4) 
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Babcock-Leighton versus alpha-effect 

There are serious potential problems with the operation of the 
alpha-effect at high field strength; not so with the B-L mechanism 

The B-L mechanism operates only in a finite range of field strength; 
potentially problematic in the presence of large cycle amplitude  
fluctuations. 

Both models can produce tolerably solar-like toroidal field butterfly 
diagrams, and yield the proper phase relationship between surface 
poloidal and deep toroidal components (with circulation included in 
the mean-field model) 

The alpha-effect (or something analogous) appears unavoidable 
in stratified, rotating turbulence. 

A decadal period arises « naturally » in B-L models; in mean-field 
models, it requires tuning the value of the turbulent magnetic diffusivity 
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Cycle fluctuations 
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Nonlinear magnetic backreaction 
through the Lorentz force 

Problem: differential rotation and meridional circulation are powered 
by thermally-driven convective turbulence, for which we are lacking 
a model simple enough for inclusion in mean-field-like dynamo models. 
 
Trick: large-scale flows are separated into two contributions, with only 
the second reacting to the Lorentz force: 
 
 
 
It is now a matter of solving an equation of motion only for this second, 
time-varying component, together with the usual dynamo equations: 

III.6.3.2 
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Amplitude modulation (1) 

Bushby & Tobias 2007, ApJ, 661, 1289. 

The primary cycle picks up a longer modulation, with period  
controlled by the magnetic Prandtl number (ratio of viscosity 
to magnetic diffusivity; ~0.01 for microscopic values) 
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Bifurcations in 
numerical solutions 

Charbonneau et al., ApJ, 619, 613 (2005) 
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Stochastic forcing 
The solar dynamo operates in part or in totality 
in a strongly turbulent environment; all large-scale 
flows contributing to field amplification will be 
characterized by strong fluctuations about the mean. 
 
Also, mean-field coefficients or other source terms 
result from a process of averaging over many 
elementary « events », and therefore will also 
fluctuate in time about their mean. 
 
Introduce this latter effect in mean-field-like models as: 

III.6.3.1 
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Amplitude modulation 
 by stochastic forcing (1) 

 

The lower extent of the 
meridional flow cell  
fluctuates stochastically 
by 1%, with coherence 
time of one month.  
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Intermittency (1) 
[ Charbonneau et al., ApJ 616, L183 (2004) ] 

III.6.3.4 
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Stellar dynamos 
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Back to basics… 
 What have we learned? 

 
1.   When rotation is present, a turbulent flow in a stratified    
      environment can produce a large-scale magnetic field 
 
2.   Differential rotation is an excellent mechanism to produce 
      magnetic fields organised on large spatial scales 
 
This is good because: 
 
1. Most stars convect somewhere in their interior 

 
2. Most stars rotate significantly 
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Early-type stars 
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alpha2 dynamo solutions 

The magnetic field produced 
by a kinematic alpha^2 dynamo 
is usually steady in time. 
 
The magnetic field remains 
« trapped » in the deep interior 
if a strong magnetic diffusivity 
contrast  exists between the 
core and envelope. 
 
A very strong field may exist 
in the deep interior, without 
being visible at the surface !!  

 

III.6.4.1 
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From the core to the surface (2) 
[ MacGregor & Cassinelli, ApJ, 586, 480 (2003) ] 

Tubes et flottaison 

In analogy to what we think happens 
at the solar core-envelope interface, 
could toroidal flux ropes here also 
form at the core boundary, and if 
so could they rise buoyantly to 
the surface 
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From the core to the surface (4) 
[ MacGregor & Cassinelli, ApJ, 586, 480 (2003) ] 

If toroidal magnetic flux ropes do form at the boundary of the convective  
core, magnetic buoyancy can lift them up to a tenth of a stellar radius under  
the surface, under the most optimistic working hypotheses. 

Curve « 9 »: thick tube, 
58T, without drag  

Curve « 5 »: thin tube, 
18T, with drag 

Curve « 7 »: thick tube, 
18T, with drag 

Curve « 1 »: thin tube, 
58T, with drag 
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Alternatives to core dynamo action 

1. Dynamo action powered by MHD instabilities  
      in the radiative envelope (e.g., Spruit-Tayler); 
      could contribute to internal angular momentum 
      redistribution and to chemical mixing 

2. Dynamo action in outer convective layers produced 
      by iron opacities 
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Intermediate mass stars 
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Fossil fields versus dynamo action 

The absence of observed temporal variability is compatible 
with the idea that a fossil field, OR a field produced during 
 a convective phase during pre-main-sequence evolution 

There exists dynamo mechanisms driven by MHD 
instabilities of large-scale internal fossil fields,  

which could operate in stellar radiative envelopes  
if significant differential rotation is present. 

III.6.4.2 



Heliophysics School 2014 97 

Fully convective stars 
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Dynamo modelling in fully convective  stars 

To « extrapolate » solar dynamo models to fully convective stars, 
we encounter the following complications:  
 
1. What is the star’s internal structure ? 
2. What happens to differential rotation in the absence of a tachocline ? 
3. As the convective envelope reaches the center, are  there  
      « transitions » in dynamo operating modes (alpha-Omega  
      to alpha2-Omega to alpha2) ? 
4.   Without a tachocline, is the Babcock-Leighton mechanism  
      still possible? Are there still starspots?  
5.   As the photosphere becomes ever cooler, what happens 
      to photospheric flux evolution ? 
6.   How do dynamical nonlinearities play into all this ?  

III.6.4.4 
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Fully convective stars 
[ Dobler, Stix & Brandenburg 2006, Astrophys. J., 638, 336 ] 

Kinetic helicity 
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Solar-type stars 
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Dynamo modelling in solar-type stars (1) 

To « extrapolate » solar dynamo models to solar-type stars of varying 
masses, luminosities and rotation rate, we must specify:  
 
1. What is the mechanism responsible for poloidal field 
       regeneration, and in what regime is it operating?  
2. What is the star’s internal structure (convection zone depth, etc)  
3. How  do the form and magnitude of differential rotation vary   
       with stellar parameters (rotation, luminosity, etc) ? 
4. How does meridional circulation vary with stellar parameters?  
5. How do the alpha-effect, turbulent diffusivity, Babcock-Leighton 
       source term, etc, vary with stellar parameters  
6.    Which nonlinear effect quenches the growth of the dynamo 
       magnetic field? 
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Dynamo modelling in solar-type stars (3) 

[ Joint work with S. Saar, Harvard/CfA ] 
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…some answers in the Lab ! (?) 
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Solar/stellar magnetism 

« If the sun did not have a magnetic  
field, it would be as boring a star as 
most astronomers believe it to be » 
 
(Attributed to R.B. Leighton) 


