

Upper atmospheres of the giant planets

Interfaces between atmospheres and magnetospheres

Luke Moore, Boston University Marina Galand, Imperial College London

Part I

Giant planet upper atmospheric physics, observations, and theory

Outline, Part I

- Upper atmosphere "basics"
 - Thermosphere, ionosphere, exosphere, homopause...
- Generation of an ionosphere
 - Photon absorption, particle precipitation
 - Ion production and loss
- Remote ionospheric diagnostics
 - Giant planet observations
- Model-data comparisons
 - Outstanding issues

Astrophysicists beware: "H-two" = $H_2 \neq HII$ "H-plus" = $H^+ = HII$

Atmospheres everywhere

Dense	Atmosp	heres
-------	--------	-------

N₂ atmospheres

- Earth
- Titan
- Triton
- Pluto

CO₂ atmospheres

- Venus
- Mars
- Pluto

H₂/H/He atmospheres

- Jupiter (P10/P11/V1/V2/Ulysses/Cassini/New Horizons, Galileo)
- Saturn (P11/V1/V2, Cassini)
- Uranus (V₂)
- Neptune (V2)

Atmospheric regimes

Upper atmosphere (aeronomy)

- Key transition region between lower atmosphere and magnetosphere
 - Energy and momentum sources:
 - EUV/FUV solar radiation
 - Energetic particles
 - Forcing from below (e.g., gravity waves)

Lower atmosphere (meteorology)

Thermal profiles

Thermosphere:

- Positive temperature gradient
- Collective (fluid) behavior

Exosphere:

- Constant temperature
 ("exospheric temperature")
- Infrequent collisions ->
 kinetic particle behavior and escape

I. Müller-Wodarg

Thermosphere of Saturn

Moses and Bass (2000)

Ionosphere

- Ionized part of upper atmosphere
 - Typically coincident with thermosphere, but
 - Present at any object with an atmosphere *
- Ion densities << neutral densities</p>
- Key layer for coupling between the upper atmosphere and the magnetosphere
 - Closure of the magnetospheric current system
- Conducting layer
 - Key source of heating of the high latitude upper atmosphere

Some outer planet properties

- Dominated by hydrogen:
- Distant: ~5.2, 9.5, 19, 30 and AU
 - (reduced solar insolation)

Fast rotators:
 ~9.925, 10.656,
 17.24, and 16.11
 hours/day

 Widely varying dipole alignments:

	Jupiter	Saturn	Uranus	Neptune
H2	89.8%	96.3%	82.5%	80.0%
He	10.2%	3.25%	15.2%	18.5%
CH4	1000 ppm	4500 ppm	2.3%	1.5%

Generation of an ionosphere: ionization sources

- Ionization thresholds:
 - H2: 15.43 eV (80 nm)
 - H: 13.60 eV (91 nm)
 - CH4: 12.55 eV (99 nm)

- Solar EUV and X-ray (<10 nm) radiation:</p>
 - Solar photon flux / (Sun-planet distance)²
- Energetic particles from the space environment:
 - A few keV to a few 100s keV

Question #1

- True or False?
 - The higher the energy of a photon, the lower in altitude it will be absorbed.
 - The higher the energy of an electron, the lower in altitude it will be absorbed.

Energy deposition

* Suprathermal electrons can be photoelectrons, auroral electrons, and/or secondary electrons

Absorption of photons in an atmosphere

Photoionization rates (cm⁻³ s⁻¹): $hv + M \rightarrow M^+ + e^-$

Deposition of auroral electrons: $e^{-} + M \rightarrow e^{-} + M^{+} + e^{-}$ Auroral electrons – Energy flux Q_{prec} = 1 mW m⁻²

M. Galand

Solar vs. particle ionization

We've talked a lot about solar photons as sources of ionization. Why not stellar photons?

Two populations of electrons

* Suprathermal electrons can be photoelectrons, auroral electrons, and/or secondary electrons

Ion and electron densities

Thermal ion continuity equation

Photochemical equilibrium

 When chemical processes dominate over transport (typically in lower ionosphere; e.g., terrestrial E region)

$$P_i = L_i$$

Chemical loss processes (cm⁻³ s⁻¹)

Radiative recombination (RR; atomic ions)

 $X^+ + e^- \to X + h\nu$

 $L_{X^+}^{RR} = \alpha_{X^+}^{RR} n_{X^+} n_e$

Charge exchange
 $X^+ + Y \rightarrow X + Y^+$ FAST (typically)
 $L_{X^+,Y}^{CE} = \alpha_{X^+,Y}^{CE} n_{X^+} n_Y$

Dissociative Recombination (DR; molecular ions)

 $XY^{+} + e^{-} \rightarrow X + Y$ FAST $L_{XY^{+}}^{DR} = \alpha_{XY^{+}}^{DR} n_{XY^{+}} n_{e}^{e} \approx \alpha_{XY^{+}}^{DR} n_{e}^{2} \rightarrow \text{If XY^{+} is dominant ion}$

SLOW

Protonated molecular hydrogen

What is it?

Photochemistry in H₂ atmospheres

- H2⁺ accounts for ~90% of initial ion production
 - $H_2^+ + H_2 \rightarrow H_3^+ + H$ R1
 - $k_1 = 2.0 \times 10^{-9} \text{ cm}^3 \text{ s}^{-1}$ H2⁺ rapidly converted to H3⁺
 - H₃⁺ + e⁻ \rightarrow neutrals R₂ k₂ \approx 8.6x10⁻⁷ T^{-0.5} cm³ s⁻¹
- H⁺ becomes dominant due to slow RR loss and short day (rapid rotation)
 - $H^+ + e^- \rightarrow H + hv$ R₃

 $\alpha_3 \approx 2 \times 10^{-10} \, \mathrm{T}^{-0.7} \, \mathrm{cm}^3 \, \mathrm{s}^{-1}$

- Initial theory therefore predicts:
 - Predominantly H⁺ ionosphere with little diurnal variation

Hydrocarbon photochemistry

Hydrocarbon/metallic ion ledge

Remote observation techniques

Remote observation techniques

Saturn Electrostatic Discharges (SEDs)

- Broadband, short-lived, impulsive radio emission, ~10 hr periodicity
 - Initially thought to originate in Saturn's rings, later shown to be associated with powerful lightning storms in Saturn's lower atmosphere
 - Detected by Voyager and Cassini (~6 SED storms to-date, lasting weeksmonths)
- Observed low-frequency cutoff can be used to derive N_{MAX}(t)
- Powerful lightning also observed at Jupiter, but no "JEDs"
 - Perhaps due to attenuation of radio waves by Jupiter's ionosphere

H3⁺ observations

- Predicted to be a major ion in outer planet ionospheres
- Plethora of H₃⁺ emission lines available in IR, particularly through K-band (2-2.5 μm) and L-band (3-4 μm) atmospheric windows
- To be continued in Part II...

* analyzed; ** taken to-date

Cassini radio occultations

Dawn/Dusk asymmetry

Latitudinal trend in N_e

 Photoionization rates at Saturn peak near the equator and fall off with latitude. The observed electron density trend is exactly the opposite. What else might be happening?

Upper atmospheric photochemistry of the giant planets revisited

- Modeled N_{MAX} larger than observed
 - Solution: convert long lived H⁺ into short lived molecular ions:
 - Unconstrained charge exchange reaction

 $H^+ + H_2(v \ge 4) \rightarrow H_2^+ + H_2$ R4 $k_4 \approx 1x10^{-9} \text{ cm}^3 \text{ s}^{-1}$ (Huestis, 2008)• Water (or other external) influx $H^+ + H_2O \rightarrow H_2O^+ + H$ $k_5 = 8.2x10^{-9} \text{ cm}^3 \text{ s}^{-1}$ $k_5 = 8.2x10^{-9} \text{ cm}^3 \text{ s}^{-1}$ $H_2O^+ + H_2 \rightarrow H_3O^+ + H$ $k_6 = 7.6x10^{-10} \text{ cm}^3 \text{ s}^{-1}$ $H_3O^+ + e^- \rightarrow \text{neutrals}$ R_7

 α 4 = 1.74×10⁻⁵ T^{-0.5} cm³ s⁻¹

- Modeled h_{MAX} lower than observed
 - Above reactions act to slightly raise h_{MAX}; in addition,
 - Forced vertical plasma drift?

Ionospheric models

Ionospheric models

Ionospheric models

 Exploration of effects of varying upper atmospheric temperatures, water and methane influxes, ionospheric outflows, and electron precipitations

- No match to upper ionosphere
- Produces low altitude layers using meteoroid influx and vertical wind shears

Coupling from below: Gravity waves

N_{MAX}(t) from SEDs

LT of storm from images, angle of incidence α calculated from storm and Cassini position

$$f_{cutoff} = \frac{f_{pe,\max}}{\cos(\alpha)}$$
$$N_e = f_{pe,\max}^2 / 8$$

Fischer et al (2011)

N_{MAX}(t) from SEDs

Summary, Part I

Ionization sources:

- EUV and X-ray solar photons, and
- magnetospheric, energetic particles (dominant in auroral regions)
- Giant planet ionospheres:
 - Dominant ionization species (H2⁺) minor constituent after chemistry
 - Major ions:
 - H⁺: long-lived, minimal diurnal variation, subject to transport
 - H₃⁺: short-lived, strong diurnal variation, predominantly in photochemical equilibrium
 - Hydrocarbon and metallic ions: extremely short-lived, bottomside "shoulder" of ionization
 - Unconstrained chemistry:
 - Populations of vibrational levels for H₂ (in particular $v \ge 4$)
 - Water (or other oxygen/metallic) influxes: variation with latitude, time, etc.

Remaining unknowns:

- Low altitude electron density layers: gravity waves or other vertical wind shear?
- Origins of observed ionospheric structure and variability
- Local time variations in ion and electron densities
- SED explanation; lack of "JEDs"

Part II

Ionosphere-thermosphere-magnetosphere coupling at the giant planets

Outline, Part II

- Auroral emissions
 - Categories of aurora
 - UV vs. IR (i.e., H₃⁺) aurora
- Ionosphere-thermosphere-magnetosphere and solar wind coupling
 - Saturn ring rain
 - The giant planet "energy crisis"
 - Upper atmospheric temperatures; heating sources
 - Ionospheric electrical conductivities
- Future prospects
 - Juno, JUICE, JWST, EChO, ...

Auroral emissions

• <u>Aurora</u>: photo-manifestation of the interaction between energetic extra-atmospheric electrons, ions, and neutrals with an atmosphere

Auroral emissions in the solar system

HST/STIS [NASA/ESA/Jonathan Nichols (University of Leicester)]

Cassini/UVIS (UV) [UVIS team]

HST/STIS NASA/ESA/John Clarke (Boston University)

UV spectroscopic analysis \rightarrow Particle characteristics IR spectroscopic analysis \rightarrow H₃⁺ density & temperature

ASA/JPL/University of Leicester/University of Arizona

Cassini/VIMS (IR) NASA/JPL/Tom Stallard (Univ. Leicester)/

Auroral UV spectroscopic analysis

- Identification of energetic particle type
- Assessment of E_m and Q_{prec} of energetic particles
 - E_m = mean energy of precipitating particles (e.g., Maxwellian)
 - **Q**_{prec} = energy flux of precipitating particles

Color Ratio	Earth	Jupiter, Saturn	
Two spectral bands chosen in:	N2 LBH	H2 Lyman and Werner	
One band strongly absorbed by:	O2 (< 160 nm)	CH4 (< 140 nm)	
Electron energy range covered:	0.2 – 20 keV	~10 – 200 keV	
Type of aurora identified:	Electron aurora (discrete only)	Electron aurora (diffuse + discrete)	

- Similar techniques can be applied at various other planets with different limitations on the product (e.g., Fox et al, 2008).
- \rightarrow Above tasks require comprehensive modeling support

Giant planet auroral emissions: 4 main categories

- (1) Emission from precipitating particles: radio and x-ray
 - Radio emission generated by precipitating electrons as they are accelerated into atmosphere along magnetic field lines
 - Originate in low density region above planet, near field-aligned potentials
 - Cause of auroral radio emission observed at all the giant planets (Zarka, 1998; Lamy et al., 2009)
 - X-ray emission bremsstrahlung emission from high-energy precipitating particles scattered by the atmosphere (e.g., Jupiter)
 - Some electron driven bremsstrahlung present (e.g., Branduardi-Raymont et al., 2007), but primarily due to highly charged heavy ions

Giant planet auroral emissions: 4 main categories

(2) Atmospheric excitation

- Prompt emission resulting from atmospheric atoms and molecules excited by precipitating particles
- The "classic" aurora (e.g., Earth)
 - Similar on different planets, owing to composition differences
- Brightest giant planet emissions:
 - UV Lyman-α (121.6 nm); visible light Balmer series (e.g., 410.2 nm); UV H2 Lyman and Werner bands (dominating over ~90-170 nm)

 \rightarrow Provides instantaneous view of the particle precipitation process

Clarke et al (2009)

Giant planet auroral emissions: 4 main categories

(3) Thermal auroral emission

- Produced from heating generated by atmosphere-magnetosphere interaction
- Molecular hydrogen, hydrocarbons, and hydrogen ions emit IR when thermalized to neutral atmosphere
 - Major heat sink in the upper atmosphere
 - H3⁺ most easily observed
 - Hydrocarbons provide majority of cooling

(4) Ionization aurora

- Ionization dominated by particle precipitation in auroral regions
- Due to long thermal timescales and short ionization timescales, auroral structure is dominated by ionization, while overall brightness is dominated by temperature
- Closely follows prompt UV auroral morphology; time and spatial lag due to H₃⁺ recombination rates and temperature variations

Protonated molecular hydrogen: H₃⁺

- First astronomical spectroscopic detection in the universe at Jupiter
 - Auroral IR measurements with CFHT (Drossart et al., 1989)
- Bright emission lines in K-band (2-2.5 μ m) and L-band (3-4 μ m) atmospheric windows
 - Strong methane absorption in the L-band
 - Therefore, at the giant planets (where H₃ ⁺ is above the homopause), H₃⁺ appears as bright emission above a dark background
- Highly temperature dependent, T⁴
- Can be used to derive ion temperatures, densities velocities
- Important as a coolant, e.g.:

 - Éfficient thermostat at Jupiter Hot exoplanets with dissociated H2 lose a key cooling mechanism

Connerney and Satoh (2000)

IR auroral spectroscopic analysis

Global H3⁺ properties

Saturn Ring Rain

- local extrema mirrored at magnetically conjugate latitudes, and also map to structures in the rings
- First non-auroral detection of H₃⁺ at Saturn
- Keck observations: 2011

O'Donoghue et al (2013)

Impact of water influx 🥌

The Giant Planet Energy Crisis

[After Yelle and Miller, 2004; Melin et al., 2011, 2013]

The Giant Planet Energy Crisis

Heating sources: forcing from above and below

- Solar heating:
 - excitation/dissociation/ionization and exothermic chemical reactions
- Particle heating:
 - via collisions and chemistry
- "Ionospheric joule heating"
 - via auroral electrical currents and ion-drag heating at high latitudes (e.g., Vasyliũnas and Song, 2005)
- Dissipation of upward propagating waves
 - e.g., gravity waves, acoustic waves, etc. (Matcheva and Strobel, 1999; Hickey et al., 2000; Barrow et al., 2012)

	Earth (TW)	Jupiter (TW)	Saturn (TW)
Solar EUV/FUV heating*	0.5	0.8	0.2
Auroral particle/Joule heating*	0.08	100	5-10

Saturn energy crisis: upper atmospheric temperatures

Saturn energy crisis: ion drag fridge effect

 Auroral Joule heating sufficient to heat high latitude thermosphere and equator-to-pole circulation
 Input of more magnetospheric energy only

exacerbates the ion drag fridge effect (Smith et al, 2007; Smith and Aylward, 2009)

* Melin et al (2007) ** Vervack and Moses (2013)

Mueller-Wodarg et al (2012)

Jupiter energy crisis: time dependent coupling effects

Yates et al (2014)

Ionosphere-thermospheremagnetosphere coupling

Ion outflow, particle precipitation

Ionosphere-thermospheremagnetosphere coupling

• Overall, at high latitudes:

the magnetosphere extracts angular momentum from the upper atmosphere through the magnetic field-aligned currents

MAGNETOSRHERE

IONOSPHERE

Ionosphere-thermospheremagnetosphere coupling

Ionospheric electrical conductances

$$\begin{array}{l} \begin{array}{l} \textit{Pedersen}\left(\sigma_{P}\right) \\ \textit{\& Hall}\left(\sigma_{H}\right) \\ \textit{onductivities:} \end{array} \quad \sigma_{P}\left(z\right) = \sum_{n} \sum_{i} \frac{n_{i}e}{B} \left(\frac{v_{en\perp}\omega_{e}}{v_{en\perp}^{2} + \omega_{e}^{2}} + \frac{v_{in}\omega_{i}}{v_{in}^{2} + \omega_{i}^{2}} \right) \\ \textit{onductivities:} \end{array}$$

$$\begin{array}{l} \textit{with} \quad \omega = \frac{eB}{m} \quad \sigma_{H}(z) = \sum_{n} \sum_{i} \frac{n_{i}e}{B} \left(\frac{\omega_{e}^{2}}{v_{en\perp}^{2} + \omega_{e}^{2}} - \frac{\omega_{i}^{2}}{v_{in}^{2} + \omega_{i}^{2}} \right) \end{array}$$

Pedersen (Σ_P) & Hall (Σ_H) conductances:

$$\Sigma_P = \int \sigma_P(z) dz$$

ionosphere

$$\Sigma_H = \int_{ionosphere} \sigma_H(z) dz$$

Indices: e (electrons), i (ions), n (neutrals) Variables:

- n, number density
- ω , gyro-frequency (= e B / m)
- V_{in} , ion-neutral collision frequency
- V_{en1}, effective electron-neutral collision frequency perpendicular to <u>B</u>
- <u>B</u>, magnetic field

Conductance: mho v (inverse of resistance, ohm backwards) Conductivity: mho/m <u>1 mho = 1 Siemens</u> (the SI unit) [e.g., Richmond 1995]

Ionospheric electrical conductances in auroral regions

M. Galand

Question

What might be causing the difference in conductance at Jupiter and Saturn?

Ionospheric electrical conductances in auroral regions

Ionospheric conductances: importance of altitude and m_i

- Assume electron density is constant with altitude
- Assume ionosphere is composed of entirely one ion
- ~50% difference in derived Pedersen conductance, mostly due to mass
- Pedersen layer near 1000 km at Saturn (~600 km at Jupiter)

Ionospheric conductances from radio occultation observations

- Electron density profiles from Galileo, Voyager and Pioneer Background atm. and ion fractions based on model, scaled to observed N_e

Future Prospects

JUNO observations through the magnetic field lines connected to the auroral ionosphere, close/within the acceleration region (expected to be 2-3 RJ from center [e.g., *Ray et al., 2009*]):

- Electric currents along magnetic field lines
- Plasma/radio waves revealing processing responsible for particle acceleration
- Energetic particles precipitating into atmosphere creating aurora
- Ultraviolet/IR auroral emissions regarding the morphology of the aurora
Summary, Part II

• Analysis of auroral emissions:

- Valuable probe of ionosphere (IR), auroral particle source, ITM coupling, and magnetic field line configuration
- Jupiter: main oval driven by breakdown in co-rotation (Io)
- **Saturn:** main oval mapped in the outer magnetosphere varying with solar wind conditions (Enceladus)
- Uranus: solar wind dominated

Ionosphere-Thermosphere-Magnetosphere (ITM) coupling

Ionospheric electrical conductances:

- Uncertainties in conductivities driven by limitation in electron (and ion) density estimates
- Differences in B field strength between Jupiter and Saturn yield significant conductance differences. Larger energy fluxes at Jupiter don't compensate for the stronger B field. Implications for ITM coupling
- Simulations:
 - Critical to estimate the upper atmosphere response self-consistently
 - Play a key role in efforts to understand underlying physics
- Energy crisis remains unsolved:
 - Investigate shorter timescales, E field variability unconstrained, role of waves, mid-latitude e?
- Lessons learned from Saturn useful for upcoming exploration of Jupiter (Juno/JUICE) and exoplanets (EChO, JWST)

Comparative cross body approach

✓ **Diversity** among solar system bodies in terms of:

physical, magnetic field, atmospheric, energy forcing settings
makes comparative aeronomy an exciting and enriching field of research

astroart.org/STFC

✓ Comparative aeronomy challenges our understanding of atmospheric processes, coupling with neighboring regions, and planet evolution, as well as open new doors for extrapolating beyond our Solar System.

Coupling with the solar wind: interplanetary shock to Earth, Jupiter, Saturn

First synoptic view of a CME-driven interplanetary shock hitting the Earth, Jupiter and Saturn, triggering major – but different – auroral responses at all three planets → Highlights the difference in setting and allows us to learn more about sw-MI coupling by comparing different responses

Distance (AU)

South aurora (HST)

Relaxed

Active

[Prangé et al., Nature, 2004]

Coupling with the solar wind: interplanetary shock to Earth, Jupiter, Uranus

M. Galand