# **Heliophysics Summer School 2015**

# Planetary dynamos and their seasons

Part 1

Gary A Glatzmaier
University of California, Santa Cruz

#### Part 1: Basics of convection and magnetic field generation

Thermal convection and internal gravity waves

Effects of viscous and thermal diffusion, rotation, density stratification, geometry

Part 2: Planetary dynamo simulations

#### Thermal convection

A parcel of fluid heats up, expands, becomes buoyant, and rises. It then cools off, contracts, becomes heavy, and sinks.

This process is an efficient method of transferring heat (internal energy) upwards when thermal conduction can not diffuse heat upwards fast enough and buoyancy forces are sufficient to overcome viscous drag.

Thermal convection in an unstable (superadiabatic) atmosphere



Internal gravity wave in a stable (subadiabatic) atmosphere



#### Dynamo mechanism in a rotating, convecting, electrically conducting, fluid:

Differential rotation shears poloidal magnetic field into toroidal magnetic field

and

helical fluid flow twists toroidal magnetic field into poloidal magnetic field.





#### Northern Hemisphere:

lest-handed kinetic helicity
right-handed magnetic helicity

$$\xrightarrow{B} + \stackrel{V}{\Leftrightarrow} \rightarrow \stackrel{B}{\nearrow}^{B}$$

Southern Hemisphere:

right-handed kinetic helicity
lest-handed magnetic helicity

$$\frac{B}{\longrightarrow} + 3 \Rightarrow 1$$

#### **Convective dynamo equations**

**Conservation of mass** 

**Conservation of magnetic flux** 

**Equation of state** 

Rate of change of velocity = - pressure gradient + buoyancy + advection + diffusion + Coriolis + Centrifugal + Poincare + Lorentz

Rate of change of magnetic field = induction + diffusion

Rate of change of entropy = Joule heating + viscous heating + advection + diffusion

Rate of change of composition = advection + diffusion

# Thermal convection



large viscous and thermal diffusivities

### Thermal convection



small viscous and thermal diffusivities

# Rotating thermal convection



small viscous and thermal diffusivities

## Rotating and magnetic thermal convection



small viscous and thermal diffusivities





# Rotating thermal convection with large density stratification



small viscous and thermal diffusivities













