Heliophysics Summer School 2015

Planetary dynamos and their seasons

Part 2

Gary A Glatzmaier University of California, Santa Cruz Terrestrial planets Earth Mercury Mars

Gas giants Jupiter Saturn

Ice giants Uranus Neptune

Satellites Ganymede Moon Europa Titan

Exoplanets

Stanley and Glatzmaier "Dynamo models for planets other than Earth" *Space Sci Rev* and *ISSI* vol 33, "Planetary magnetism" ed, A. Balogh, 2009.

Part 2: Planetary dynamo simulations

Geodynamo and its dipole reversals (magnetic seasons) Jovian dynamos and the *Juno* and *Cassini* missions

Radial Component of the Magnetic Field

At surface At core-mantle boundary

Geomagnetic field (1980) up to degree 12

G-R simulation plotted up to degree 12

G-R simulation up to degree 95

Inner core super-rotation with gravitational coupling between inner core and mantle

Dipole moment

Surface of the Earth

Surface of the Outer Core

Jovian dynamos and the Juno and Cassini missions

Surface observations of Jupiter

banded atmospheric clouds

banded zonal winds

Ashwin Vasavada

Latitudinally banded zonal winds

thin shell model

"Saturn" simulation

Juno mission to Jupiter (and *Cassini Grand Finale* mission to Saturn)

If no banded axisymmetric structures were observed in *Juno's* magnetic and gravity data, all strong zonal winds on Jupiter's surface are likely shallow atmospheric features.

If only broad-banded axisymmetric structures were observed in *Juno's* magnetic and gravity data (as in these simulations), Jupiter's broad low-latitude jets likely extend through the deep interior, but the narrow high-latitude jets are likely shallow atmospheric features.

If banded axisymmetric structures were observed at all latitudes in *Juno's* magnetic and gravity data, the zonal winds on Jupiter likely all extend well below the surface, possibly down to a double-diffusive stable stratification in which internal gravity waves exist.