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Outline

This presentation will briefly describe the ionospheres of Earth, Venus, and Mars;
explain how ions are produced and destroyed; and offer a hypothesis for why
these terrestrial planet ionospheres differ in fundamental aspects.

Part [:
« Introduction to Earth’s ionosphere
+ Overview of Earth’s atmosphere
* lonization processes

» Chemical processes

Part II:
« lonospheres of Mars and Venus
» Atmospheres of Mars and Venus

+ Why is Earth so different?




Planets that have Atmospheres Must Also Have lonospheres

The Terrestrial Planets (that have atmospheres)




Motivating Questions

+ Why does the ionosphere occur in “layers?”

+ Since the Earth’s ionosphere is produced mostly by solar radiation, why does it
persist at night?

+ Since most ionization occurs between 100 to 200 km in altitude, why is most of
the ionosphere above 300 km altitude?

* Why are the ionospheres of Venus and Mars so different from Earth’s?

“Layers” in the lonosphere
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Major Species Density Structure of the Atmosphere
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lonosphere Basic Altitude Structure
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Atmospheric Distribution in Hydrostatic Equilibrium

Pressure gradient: d_p - —g(z)p (height derivative of pressure equals
dz acceleration of gravity times density)
Perfect gas law: p =nkT = %kT M is the mean molecular mass
If gand T are not dp Mg p
functions of z, then: — =-p— =—-— where scale height H = —
dz kT H Mg
dp dz
p H

“law of atmospheres™ p(z) = p(zo)exp[— < ;_IZO ]

— %o where Hj =k—T
Hj Mjg

e . <
In diffusive separation: n;(z) =n;(z,)exp|-

At what Altitude is Energy Deposited in an Atmosphere?

Controlled by cross sections of atmospheric gases for absorption (o) or ionization (o;).
Which are in general a function of wavelength (A).
For a single-species, plane-parallel atmosphere, at any particular A:

lonization Rate = (radiation intensity) x (ionization cross section) x (density)
Q(Z) = qz = Izainz

Beer’slaw: I, =1 _exp(-T,)

ON. onH 2-2,
where T, is the optical depth: T, = = exp|—

u u
and u = cos (solar zenith angle)

9. =1 exp(—rz )Gino eXP[_ : ;‘IZO }

Z_ZO
=[_on,exp|- -T
qz ("0 p[ H zjl

This expression (due to Sidney Chapman) is known as the Chapman Function.
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Typical Chapman Function
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Where is the Peak of a Chapman Function?
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Plot of the Altitude at which Solar Photon Optical Depth = 1
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Wavelength-Dependence of lonization Rates (solar min)
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Wavelength-Dependence of lonization Rates (solar max)
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lonosphere Basic Altitude Structure
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lonization Processes and Thermospheric Heating

Photon flux enters

hv, e*
% g the|atmosphere
2 v, e*
0,0,

hv, e*
lonization processes
convert photon
energy to chemical
potential energ

converts ionization energy
to dissociation products
N+O 0+0 and kinetic|energy

i.e., heat

Dissociative recombination
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Types of lonospheric Chemical Reactions

Radiative Recombination
X*+e — X+hv
slow, rate coefficients of the order of 102 cm3 s
Dissociative Recombination
XY++e — X+Y + kinetic energy
fast, rate coefficients of the order of 107 cm® s
Charge Exchange
WX+ +YZ — WX +YZ+
moderately fast, rate coefficients of the order of 109 cm3 s
Atom-lon Interchange
Xt+YZ — XY++Z
rate depends on the strength of the YZ bond
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Idealized lllustration of Some lon Chemical Reactions

Conversion of Nyto NO* Conversion of N to NO*

B -

®The COMET Program ®The COMET Program

Dissociative Recombination of NO*

®The COMET Program
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Simple Case — Single Species Molecular Atmosphere

M, + hv — M,* ionization rate g

M*+e — M+ M rate coefficient a
Assuming photochemical equilibrium: g = o [M,*] [e]
Assuming charge neutrality: [e7] = (g/o)12

The E region ionosphere, ~100~150 km, contains mostly molecular ions,
photochemical equilibrium applies, and most dissociative recombination rates
are similar (i.e., very fast).

This formula approximates ion densities in the “E region” of Earth’s ionosphere,
which is, roughly speaking, a “Chapman Layer.”
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Complicated Case — Earth’s F Region lonosphere

Because of the decrease in molecular densities, the photochemical lifetime of O*
becomes longer than the diffusion lifetime (the time it takes to move by a scale
height in the vertical direction) above ~200 km.

Thus, the Fregion is not a simple Chapman layer caused by the absorption of
radiation, but rather a balance between chemical reactions at lower altitude and

ambipolar diffusion at higher altitude.

The long lifetime of O+ at high altitude is also why the F, region persists at night.
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lon Chemistry Explains Why O+ is the Primary F-region lon

__— Low O,
Density

Very strong
N, bond
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lonospheric Electrodynamics

Equatg@‘fg
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The Low-Latitude Dynamo Creates the Appleton Anomaly

Interhemisphetric FAC’s
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a.k.a., equatorial ionization anomaly, intertropical arcs, tropical nightglow, etc.
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Thermosphere-lonosphere Modeling during Storms
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Thermosphere-lonosphere Modeling during Storms
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The F,, , solar radio flux index does not describe this difference between the solar minima.
To accurately simulate the upper atmosphere density, we need to use actual solar measurements,
or indices derived from them. 36
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Motivating Questions

+ Why does the ionosphere occur in “layers?”
— It doesn't, really, but there is such a thing as a Chapman function.

+ Since the Earth’s ionosphere is produced mostly by solar radiation, why does it
persist at night?

— Because of the long lifetime of O*, which is due its slow reaction with N.,.

+ Since most ionization occurs between 100 to 200 km in altitude, why is most of
the ionosphere above 300 km altitude?

— Also because of the long lifetime of O*.

* Why are the ionospheres of Venus and Mars so different from Earth’s?
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lonospheres of Other Terrestrial Planets
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lonosphere of Mars

Number Density (cm™)

lon composition measurements from the Pioneer Venus mission
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Why are the ionospheres of Mars and Venus, although
similar to each other, so different from Earth?

On Mars and Venus the most abundant ion is O,*, and also O* at high altitude.
Unlike Earth, there is no “F layer”, and very little ionosphere at night.

— Why doesn’t O* have a longer lifetime on Mars and Venus?

— Why is there so much O,* when they have so little O, in their atmospheres?
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Primary Atmospheric Composition of the Terrestrial Planets

Planet Molecule @ Abundance % of Total

(bars)
The atmospheres
of Venus, Earth and Venus CO, 87 96.5%
Mars contain many N, 3.2 3.5%
of the same gases,
but in very different 20 il OOl
absolute and
relative abundances. Earth N, 0.78 77%
0, 0.21 21%
H,O ~0.01 ~1.0%
CO, 0.0004 0.04%
Mars CO, 0.0062 95%
N, 0.0002 3%
Ar 0.0001 2%
H,O ~106 ~0.01%
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Altitude (km)
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Average Temperature Profiles of the Terrestrial Planets
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Principal lonization Processes on Venus & Mars

hv hv

Weak bond,
fast reaction

Another fast reaction

O+0
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A High-Carbon, Low-Density, Low-Altitude lonosphere
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lon-interchange reactions convert O* and CO,* to O,*, which has a short lifetime.
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Venus and Mars are “Normal”, Earth is Anomalous

On Venus and Mars, O* reacts rapidly with CO, and CO,* reacts rapidly with O
because these atom-ion interchange reactions have fast rate coefficients.

This is because CO, is not very strongly bonded, compared to N,.

Therefore, Venus and Mars ionospheres are “E region” types, controlled mostly
by photochemical equilibrium at their peaks.

Earth lacks sufficient carbon in its atmosphere, and doesn’t have enough O, at
high altitude, for this to happen. Atom-ion interchange of O* with N, is very
slow, due to the strength of the N, bond. This creates the high, dense,
persistent “F region” and a lot of interesting ionospheric variability.
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So...

Where’s the Carbon?
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The Earth’s Carbon Cycle
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Summary
* Why does the ionosphere occur in “layers?”
— It doesn't, really, but there is such a thing as a Chapman function.

« Since the Earth’s ionosphere is produced mostly by solar radiation, why does it
persist at night?

— Because of the long lifetime of O+, which is due its slow reaction with N.,.

+ Since most ionization occurs between 100 to 200 km in altitude, why is most of the
ionosphere above 300 km altitude?

— Also because of the long lifetime of O*.
* Why are the ionospheres of Venus and Mars so different from Earth’s?

— Because they have CO, in their atmospheres, which rapidly reacts with O*.

The F-region ionosphere is unique to Earth among the known planets. This is due to
its peculiar atmosphere, lacking in CO,, dominated by N,, and carrying its oxygen in
unusual and reactive states. Earth has a significant carbon budget, and once had
much higher levels of CO, in its atmosphere, but most of its carbon is currently locked
up in the crust in the form of carbonate rocks. Thus, the F-region ionosphere may be
a recent event in the history of Earth, an artifact of geology and biology.
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Question for Discussion

A high, dense, “F-layer” ionosphere observed on a terrestrial-type planet
would be a sign of life on that planet.

1. True
2. False
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