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Basic idea behind physical instabilities

Ne/

Stable Equilibrium

/N

Unstable Equilibrium

» If you perturb this stable equilibrium, the ball will return to its
original location, or oscillate around it if damping is weak

» If you perturb this unstable equilibrium, the ball will roll away



Mechanical analogy

» If W(x) is the potential energy, then the particle feeds a force
Fx = —0W /Ox
» Equilibria occur when OW /0x =0

» To lowest order in the Taylor expansion about an equilibrium
point, the change in potential energy is

SW = % (6;‘/2'/) (Ax)? (1)

» The equilibria are stable when 6 W > 0
» The equilibria are unstable when 6W < 0



Wiki list on plasma instabilities

List of plasma instabilities [=dit]

« Bennett pinch instability (also called the z-pinch instability ) « Flute instability

« Beam acoustic instability « Free electron maser instability

« Bump:-in-tail instability « Gyrotron instability

« Buneman instability,[?! « Helical instability (helix instability)

« Helical kink instability

« Hose instability (also called Firehose instability)

« Interchange instability

« lon beam instability

« Kink Iinstability

« Lower hybrid (drift) instability (in the Critical ionization velocity mechanit
« Magnetic drift instability

« Magnetorotational instability (in accretion disks)

« Cherenkov instability.(”

« Chute instability

« Coalescence instability,[al

« Collapse instability

« Counter-streaming instability

« Cyclotron instabilities, including:
« Alfven cyclotron instability
« Electron cyclotron instability
« Electrostatic ion cyclotron Instability
« lon cyclotron instability
« Magnetoacoustic cyclotron instability
« Proton cyclotron instability
« Nonresonant Beam-Type cyclotron instability
« Relativistic ion cyclotron instability
« Whistler cyclotron instability

« Magnetothermal instability (Laser-plasmas) (8]

« Modulation instability

« Non-Abelian instability (see alse Chromo-Weibel instability)
« Chromo-Weibel instability

« Non-linear coalescence instability

« Oscillating two stream instability, see two stream instability
« Pair instability

« Parker instability {magnetic buoyancy instability)
« Diocotron :nslabil:ty,ls] {similar to the Kelvin-Helmholtz fluid instability). , peratt instability (stacked toroids)

« Disruptive instability (in tokamaks) « Pinch instability

« Double emission instability « Sausage instability

« Drift wave instability « Slow Drift Instability

« Edge-localized modes (6] « Tearing mode instability

« Electrothermal instability « Two-stream instability

« Farley-Buneman instability,’] « Weak beam instability

« Fan instability « Weibel instability

« Filamentation instability « Z-pinch instability, also called Bennett pinch instability

« Firehose instability {also called Hose instability)



MHD as a model of large-scale instabilities

» ldeal MHD is frequently used to describe large-scale
instabilities characterized by low frequencies and long wavelengths.

» Ideal MHD is often a questionable model is weakly collisional
plasmas, but describes well instabilities that grow rapidly.

» Such instabilities tap into macroscopic sources of free energy
» Current density, plasma pressure, field-line bending, sheared flows

» MHD instabilities can lead to nonlinear explosive behavior.

» MHD instabilities can also produce turbulence widely seen in
Nature, and the dynamo effect that can produce magnetic fields.

» MHD is a useful point of departure, even when it needs to be
improved by including kinetic or non-ideal effects.

» In astrophysical objects, heat conduction and radiative cooling
can also be destabilizing.



General strategy for studying plasma stability

» Start from an initial equilibrium, e.g.,

= Vpo (2)

» Linearize the equations of MHD and discard higher order
terms

» Slightly perturb that equilibrium
» If there exists a growing perturbation, the system is unstable
» If no growing perturbation exists, the system is stable

» Use a combination of numerical simulations, experiments, and
observations to study nonlinear dynamics



Linearizing the equations of ideal MHD

» Following the procedure for waves, we represent the relevant
fields as the sum of equilibrium (‘0") and perturbed (‘1)

components
p(r,t) = po(r)+ pa(r, t) (3)
V(r,t) = Vi(r) (4)
p(r,t) = po(r)+ pi(r,t) (5)
B(r,t) = Bp(r)+ By(r, 1) (6)

where Vo = 0 for a static equilibrium

» Assume that the perturbed fields are much weaker than the
equilibrium fields

» Use the convention that the perturbed fields vanish at t =0




Linearizing the equations of ideal MHD

» To zeroeth order, a static equilibrium is given by

(V X 3;)() x Bo (7)

Vpo =

» Ignoring products of the perturbations gives

9
% — Vi Vpo—poV-Vi (8)
oV V xBp) x B VxB{) xB

pit = vy (BB (TxB)xBe
0B1 B VX(VIXBO)
ot C (10)
9
S = —Vi-Vpo—poV -V (11)

Note that Vi is the only time-dependent variable on the RHS
of Eqgs. 8, 10, and 11.



The displacement vector, &, describes how much the

plasma is displaced from the equilibrium state

g

(displacement)

(equilibrium position)

» If £(r,t = 0) = 0, then the displacement is

t
£(r 1) = / Va(r, t)dt’ (12)
0
» Its time derivative is just the perturbed velocity,

28 —Vy(r1) (13)



Integrate the continuity equation with respect to time

» Put the linearized continuity equation in terms of £

9
% — _V;-Vpo—poV - Vi (14)
9 9
Bf Vpo — poV - € (15)

» Next we can integrate this

tapl r ‘ 6€ 65 /
/OBt’dt = /0 [ 3 -Vpo — poV - 5 dt’ (16)

which leads to a solution for p; in terms of just &

pl(ra t) — _G(ra t) ) va - PoV " E(ra t) (17)




The linearized momentum equation in terms of § and F[€]

» Using the solutions for p1, B1, and p; we arrive at

2
poos = FIE(r, 1) (21)

which looks awfully similar to Newton’s second law
» The ideal MHD force operator is

F(§) = V(§-Vpo+7poV - &)
+%(V x Bg) x [V x (& x By]

+%{[V x V x (& x Bg)] x Bo} (22)

» The force operator is a function of £ and the equilibrium, but
%3
not It



Finding the normal mode solution

» Separate the space and time dependences of the displacement:

§(r,t) = &(r) T(t) (24)

» The linearized momentum equation becomes

(i:—tzT = —w’T (25)
—Wpok(r) = FIEN)] (26)

so that T(t) = e™* and the solution is of the form
E(r,t) = £(r)e™* (27)

» Eq. 26 is an eigenvalue problem since F is linear

» The BCs determine the permitted values of w?
» TThese can be a discrete or continuous set



The MHD force operator is self-adjoint

» The operator F(&) is self-adjoint. For any allowable
displacement vectors 1) and &

[ n-F@ar= [ & Fomar (29)

For a proof, see Freidberg (1987)

» Self-adjointness is closely related to conservation of energy
» If there is dissipation, F will not be self-adjoint



Finding the normal mode solution

» For a discrete set of w?, the normal mode solution is

E(r,t) = 3 €n(r)et (28)

where &, is the normal mode corresponding to its normal
frequency wp

» Because F is self-adjoint, w% must be real

» |f w?, > 0 Vn, then the equilibrium is stable

» If w? < 0 for any n, then the equilibrium is unstable
» Stability boundaries occur when w =0

» Now all we have to do is solve for a possibly infinite number
of solutions!




The variational principle

» From these equations, we arrive at

w2 _ 5W(€a€)
0K (&, €)

» Any & for which w? is an extremum is an eigenfunction of
2 o b 2
—w*po& = F(&) with eigenvalue w

(39)

» If 0W < 0, then there is an instability!




Strategy for the variational principle

» Choose a trial function
£=Y andn (40)

where ¢, are a suitable choice of basis functions subject to
the normalization condition

K(&, &) = const. (41)

» Minimize d W with respect to the coefficients a,

» A lower bound for the growth rate v is

vy (42)



The intuitive form of energy principle

» After manipulation the energy principle can be written as

SWp = 2/dr[“?’“' |v £, +2¢, - k|2
+yp |V - €| _2(€_L'VP)(K"€J_)
—Jj (§1 x b) - Bii] (48)

» The first three terms are always stabilizing (in order):

» The energy required to bend magnetic field lines (shear Alfvén
wave)

» Energy necessary to compress B (compr. Alfvén wave)

» The energy required to compress the plasma (sound wave)

» The remaining two terms can be stabilizing or destabilizing:

» Pressure-driven (interchange) instabilities (associated with J )
» Current-driven (kink) instabilities (associated with J))



The kink instability

(v}

» Magnetic pressure is increased at point A where the perturbed
field lines are closer together

» Magnetic pressure is decreased at point B where the
perturbed field lines are separated

» A magnetic pressure differential causes the perturbation to

grow

» The kink instability could be stabilized by magnetic field along
the axis of the flux rope

» Tension becomes a restoring force

» Usually long wavelengths are more unstable



Good curvature vs. bad curvature

» Pressure-driven or interchange instabilities occur when

k-Vp>0 (42)

where k = b - Vb is the curvature vector. This is a necessary
but not sufficient criterion for pressure-driven instabilities.

» Instability occurs when it is energetically favorable for the
magnetic field and plasma to switch places

» Usually short wavelengths are most unstable



Pressure-Gradient Driven

MHD Instabilities
bad bad good
g Vp! it Vpt Kl K|
k-B=0 k-B=0

Rayleigh-Taylor

_P arker InterChange Balloonlng



Substorm Onset:
Where does 1t occur?
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Substorm Onset

Auroral bulge




Substorm Onset:
When does 1t occur?

v

Impulsive Growth Phase

A (Onset) ]

Current Disruption

Growth Phase L
—— -
30-45 min <| min 10sec~T,
time

(Ohtani et al., 1992) Growth Expansion Recovery



Substorm Onset:
How 1s it triggered?

Near-Tail Instabﬂity [e.g. A. Roux et al., 1991, Lui et al., 1992; Erickson et al., 2000]

Ballooning

Instability <+<— 1. Internal instability

(~10 Re) 2. Tailward 3. X-line formation
rarefaction wave (20-30 Ry)

‘ \- N }
4

1. X-line formation

2. ngh speed (20_30 RE)
3. Flow braking; Earthward flow
flux pile-up
(~10 RE)

Mid-Tail Reconnection [e-e- Shiokawa et al., 1998]



Substorm Onset:
The “2-minute” problem

“This year's substorm conference (ICS-4, 1998) was one of the
most successful yet with over 250 in attendance. All existing
paradigms were discussed at length and during the wrap-up
session 1t was realized that only the time of the events within 2
minutes of onset were still seriously under debate. Since it
seems somewhat foolish for a couple of hundred scientists to
travel half way around the world to argue over two minutes of
geomagnetic activity, the substorm problem was declared solved
and no more substorm conferences are being planned.”

--- Y. Kidme (Kamide?)

(AGU-SPA Newsletter, April 1, 1998)



Is Near-Earth Magnetotail
Ballooning Unstable?

— K
11 ”
bad curvature

-

Near-Tail (7~10R,)
p., ~O) - 0O(100)!!




Is Near-Earth Magnetotail
Ballooning Unstable? Yes ...

But only when beta, field line length, gamma, CS width, ky 1s in
the unstable parameter regime: near-tail, growth phase

Near-Tail 7~10R,) = = ="
p., ~ O0@1) - O(100) (Cheng and Zaharia, 2004)



Nonlinear Ballooning:
Detonation or Saturation?

* Linear growth too weak — sub-Alfvenic

e Current sheet disruption 1s nonlinear
— Nonlinear spectrum of 0B (Chen, Bhattacharjee, et al., 2003)

* Detonation model: explosive growth of nonlinear
instability --- (te-t)™ (Cowley and Artun, 1997)



Pressure-Gradient Driven

MHD Instabilities
bad bad good
g Vp! it Vpt Kl K|
k-B=0 k-B=0

Rayleigh-Taylor

_P arker InterChange Balloonlng



Nonlinear Rayleigh-Taylor-Parker (RTP)
Instability
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Nonlinear RTP: formation of
contact discontinuity
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(Zhu et al, 2005)




Nonlinear Ballooning Growth: Initial Spectrum: n=1
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® k,=2nw/L,; n — Fourier mode number in y-direction.

® All higher-n Fourier modes are gradually excited. The growth of all
modes slows down and saturates in nonlinear phase.



Overstable modes

» We said that there are no overstable modes in ideal MHD, but
this changes in the presence of sheared flows
» This also occurs when we go beyond MHD and include, e.g.,

» Radiative cooling
» Anisotropic thermal conduction

» Examples include (e.g., Balbus & Reynolds 2010)

» Magnetothermal instability
» Heat flux buoyancy instability

These are important in the intracluster medium of galaxy
clusters.



The Kelvin-Helmholtz instability results from velocity shear

» Results in characteristic Kelvin-Helmholtz vortices

» Above: Kelvin-Helmholtz instability in Saturn’s atmosphere



AL € R

DISKS

Due to angular momentum
conservation, matter can rarely
accrete directly into a central
mass.

Accretion is controlled by the
dynamics and structure of disk
object that forms.

But observed accretion rates are
far too large to be explained by
the molecular viscosity.



Global domain

Turbulence is an obvious
panacea.

Transport could be
enhanced by orders of
magnitude.

Hopefully independent of From Jacob Simon’s webpage
Reynolds numbers. o —

But what causes the turbulence?

All indications are the hydrodynamic disks are stable.

Currently accepted theory (Balbus & Hawley 1991) relies on the disk
being ionized:

The magnetorotational instability (MRI) causes the system to become
turbulent, leading to strong outward angular momentum transport.



The Linear MRI 1involves a force operator
that 1s non-self-adjoint

e Ideal MHD problems involving sheared plasma flows are non-self-
adjoint (Frieman and Rotenberg, 1960)

2
92E 9E
95 oovvIE _FIEl -0
patz prV— {&}

* Non-self-adjointness persists in the presence of dissipation.
e Eigenmodes are non-orthogonal.

* Non-orthogonality of Gronh
T T T T - 08
eigenmodes allows for .-~ 0s
. A e e e e e T 04
transient faster than the [ 02

0.0
0o 1 2 3 4 5

least unstable eigenmode.

e Method: choose a norm and maximize the solution at a chosen time.



A toy example (Trefethen and Embree 2005, Schmid
2007, Camporeale 2012)

Consider

do(t)

T2 A ,
dt a2

-1 0 -1 10
(0 %) e (0 )

A is normal but B is not. Both have the same eigenvalues. The growth function

_ sl _ ¥l
6O~ 16OI

G(1)

Fig. 1 Time evolution of the 3
norm of the exponential matrix
for the matrices A and B. The
curves shown bound by above the
growth function G(r) for any
possible initial perturbation. The
matrix B, being non-normal can
support a transient growth




|deal, resistive, and kinetic instabilities

» ldeal instabilities are usually the strongest and most unstable
» Current-driven vs. pressure-driven

» Resistive instabilities are stable unless 17 # 0

» Growth rate is usually slower than ideal instabilities
» Often associated with magnetic reconnection

» Kinetic instabilities are often microinstabilities that occur
when the distribution functions are far from Maxwellian

» Two-stream, Weibel, Buneman, etc.

» Important for near-Earth space plasmas, laboratory plasmas,
cosmic ray interactions with ambient plasma, and dissipation
of turbulence



