Coronae, Heliospheres and Astrospheres

Heliophysics Summer School, Boulder CO, 2018

Outline

Part I: I. Solar Vs. stellar physics II. Stellar evolution III. Coronae and winds IV. Stellar environments - astrospheres Part II V.Stellar evolution and magnetized winds VI. Stellar mass-loss rates and stellar spin-down **VII.** Flares VIII.Exoplanets and planet habitability

Material mostly based on Volume IV chapters 2,3,4

Part I

The Solar-stellar connection

SDO observations of the Sun

nee prin ne prins prins print an anna an e. prinseptimenti, it is rais itir, is pap. Assemptit, rais, rit, papas different.

Photometry - measuring the intensity of the light

Time (0.0 - 2.455.000)

Spectrometry - measuring the intensity of particular

Transmission spectra - E=hv

How many photons with certain energy (thus waveler

Kepler systems observed as of Jan 2016

Solar Physics:

- 1. High-resolution global observations
- 2. High-cadence observations of temporal evolution
- 3. Multi-wavelength observations
- 4. In-situ observations of the interplanetary environment
- 5. Detailed and constrained models
- 6. Information only about one star

Stellar Astrophysics:

- 1. Statistical information on many stars
- 2. Data on different spectral types
- 3. Data on stellar evolution of each type, including solar analogs
- 4. Information about planetary systems
- 5. Limited knowledge about specific parameters
- 6. Limited knowledge about stellar winds and interplanetary environments
- 7. Unconstrained models

Stellar Evolution

Stellar Evolution (yes, some figures are from Wikipedia...)

Class	Temperature (kelvins)	Conventional color	Apparent color
0	≥ 33,000 K	blue	blue
в	10,000-30,000 K	blue to blue white	blue white
A	7,500-10,000 K	white	white to blue white
F	6,000–7,500 K	yellowish white	white
G	5,2006,000 K	yellow	yellowish white
к	3,700-5,200 K	orange	yellow orange
м	≤ 3,700 K	red	orange red

Star-forming regions molecular clouds

Protoplanetary disk

What drives stars?

Nuclear Fusion

Main Sequence: H—> He Post-main Sequence:

Mid-size stars

sub-giant phase - H burning in the H shell
red-giant phase - He burning with H shell
Asymptotic-giant-branch phase - H,He shell
burning, C,O core
Planetary nebula —> white dwarf —> black dwarf

Main Sequence: H—> He Post-main Sequence:

Massive stars: A chain-reaction of nuclear reactions that create heavier elements in the core.

Temperature (and luminosity)

Creation of heavier elements

When provid

-

Internal structure

Different dynamo mechanism to generate stellar magi

Stellar Coronae and Winds

Hot stars radiation driven winds:

7000-8000K and above Full radiative envelop Relatively cold corona (10,000-50,000K) Winds become supersonic almost at the surface Radiation pressure drives powerful winds (10000km/s) and strong mass-loss rate (10⁻⁶ Msun/yr, solar is 10⁻¹⁴ Msun/yr)

Low-mass, cool stars solar analogs, Sun-like stars Cool stars - hot coronae

corona is heated and how does the solar

Low-mass, cool stars solar analogs, Sun-like stars Cool stars - hot coronae

SDO/AIA

The problem of coronal heating:

The temperature of the solar (and stellar) corona is over a million degrees Kelvin (5000K at the photosphere).

High-Resolution Coronal Imager (Hi-C) Cirtain et al., Nature, 2013

The origin and evolution of the solar wind

Solar gravity

Pressure gradient

E. Parker 1958

 Bimodal - cooler, less dense, fast wind and hotter, more dense, slow wind populations.
Faster than predicted by the hydrodynamic model .
Inverse relations between wind speed and electron temperature - contradicts hydrodynamic model.

The Alfven point/surface

The structure of the Heliospheric Magnetic Field (IMF):

By J. Luhmann

Pneumann & Kopp 1971

The IMF - Parker spiral:

Heliospheric latitude

$$\mathbf{B}(\mathbf{r}) = B_s \left(\frac{r_0}{r}\right)^2 \left[\hat{r} - \frac{r\Omega_{\odot}\sin\theta}{u_{sw}}\hat{\phi}\right]$$

Magnetic field at r₀

Solar rotation

Copyright: Southwest Research Institute

Solar minimum (dipole) - equatorial slow wind (dense), polar fast wind (less dense), lower IMF Solar max (multipole) - mostly slow wind, unstructured, increased IMF The structure of the solar wind and the interplanetary space is controlled by the structure of the solar/stellar magnetic field!!!

v does this relation changes in other st

Astospheres

flow Shock Name of Towny Short in the Orders Hadada : Collins of the State of the

Solar wind

Cosmic rays

for $r >> r_0$

$$\mathbf{B}(\mathbf{r}) = B_s \left(\frac{r_0}{r}\right)^2 \left[\hat{r} - \frac{r\Omega_{\odot}\sin\theta}{u_{sw}}\hat{\phi}\right]$$

The effect of stellar rotation:

$$\mathbf{B}(\mathbf{r}) = B_s \left\{ \mathbf{\Omega}_{\odot} \sin \theta \right\}_{u_{sw}} \left[\mathbf{\Omega}_{\odot} \sin \theta \right]_{u_{sw}} \left[\mathbf{\Omega}_{u_{sw}} \left[\mathbf{\Omega}_{u_{s$$

For faster rotations, the azimuthal component dominates the AMF:

Cohen, drake & Kota, 2012; Cohen & Drake 2014

The effect of B_s:

 $\mathbf{B}(\mathbf{r}) = B_s \left(\frac{1}{2} B_s \frac{r\Omega_0 \sin\theta}{u_{sw}} \hat{\phi} \right]$

B_s is not uniform and $u_{sw}(B_s)$. Solar Minimum

Solar Maximum

Wilcox Solar Observatory data

PFSSM - Riley et. al 2006

Young, active, fast-rotating stars seem to have their magnetic activity concentrated at high latitudes.

AB Doradus - young active Sun (P=0.5 days):

Hussain et. al 2007

Schrijver & Title 2001

Cohen, Drake & Kota, 2012

IMF quantities with strong latitudinal dependence should be affected by the latitudinal location of the active regions. How to observe magnetic fields in other stars?

Light - Electromagnetic wave

Zeeman splitting

Polarimetry - Observing light polarization Give insight about magnetic fields

Linear polarisation of a line Q and U give the transverse field components Circular polarisation V gives the line-of-sight components

Zeeman–Doppler imaging (ZDI)

Coronal Mass Ejections (CMEs):

10¹² kg (mt. Everest)
10¹⁵ ergs (magnitude 9 earthquake)
Speed of 500-1500 km/s (takes 2-4 days to travel to the Earth)

CMEs also take mass from the Sun...

How do CMEs change with stellar evolution and change in activity level?

• Impact on CME initiation.

• Impact on propagation & evolution.

Observations: Stellar flares...

Impact on CME initiation:

Schrijver & Title 2001

Do stellar CMEs scale with the overall increase in magnetic energy?

Open question...

Different initiation mechanism? Solar CME

Fan & Gibson 2007

FK Comae

The propagation and evolution of CMEs depend on the Astrospheric field.

Strong azimuthal field close to the star

Strong field strength

A toy simulation of a CME on AB Doradus

Alvarado-Gomez et. al 2018

Part II

Stellar Evolution and Magnetized Winds

Ayres 1997

Skumanich Law: $\Omega \propto \tau^{-1/2}$

Skumanich Law: $\Omega \propto \tau^{-1/2}$

Ayres 1997

We need a mechanism explain stellar loss of angular momentum (spindown) over time.

Stellar angular momentum loss to the magnetized wind ("magnetic breaking" - Weber-Davis, 1967):

 $\dot{J} = \frac{2}{3}\Omega \dot{M} r_A^2$

Alfven surface

 $\frac{\dot{\Omega}}{\Omega} \propto \frac{\dot{M}}{M} \left(\frac{R_{\rm A}}{R_{\odot}}\right)^m$

Defining stellar mass-loss rates is a key for understanding stellar evolution!!!

J. Bouvier

C. Folsom

The faint young Sun paradox (Sagan & Mullen 1972):

•The luminosity of the young Sun was about 30% lower than the current luminosity.

- •Therefore, the surface temperature of the Earth should have been bellow freezing.
- •Geological record shows the existence of liquid water on the surface.... A paradox!!!
- •If the young Sun was slightly more massive and the solar mass loss rate was high solar luminosity isn't that low... No paradox!!!

Can we observe winds of cools stars and define their n

Kind of...

sciencemag.org

The Solar neighborhood

Wood et. al 2014

Winds mass-loss rates of cool stars - 10⁻¹⁵-10⁻¹² Msun/yr.

Solar wind mass-loss rate: rhosw*usw* $4\pi(1AY)^2 = 2*10^{-14} Msun/yr$.

Mass-loss rate due to CME: CMEs carry 10^{13} - 10^{17} g Over the solar cycle - 0.5-4 CMEs per day, Average of 2-3 CMEs per day. 2-3* 10^{15} g / 86400 sec (per day) = 2-3* 10^{10} g/s Mass-loss rate of about 5* 10^{-16} Msun/yr

Few percents of the SW mass-loss rate

What if the CME rate is much higher? How to scale CMEs to other stars?

Scaling solar CMEs with solar flares (LASCO & GOES 1-8A):

Aarnio et. al 2012

 $\log(CME \text{ mass}) = (18.67 \pm 0.27) + (0.70 \pm 0.05) \times \log(\text{flare flux})$

CME mass-loss rate:

Drake et. al 2013

Drake et. al 2013: 10⁻¹¹ - 10⁻¹⁰ Msun/yr (1% - 10% L_{bol}) Aarnio et. al 2012: 10⁻¹¹ - 10⁻⁹ Msun/yr

Impact on stellar spindown (Aarnio et. al 2012):

$$\tau = k^2 \left(\frac{M_{\star}}{\dot{M}_{CME}}\right) \left(\frac{R_{\star}}{r_A}\right)$$

Faint young Sun paradox:

Mass-loss No angular momentum loss

Mass-loss & angular momentum loss The Sun could lose large mass without lose angular me

The Sun have been 10% more massive - the faint young

Thanks to Rachel Osten

"If the Sun did not have a magnetic field, it would be as boring a star as most astronomers think it is" -- R. B. Leighton

Flare - a (large) bump

GOES Xray Flux (5 minute data)

What is an explosive event?

stellar astronomers only see the radiative manifestation of the explosive event - the flare •Involves particle acceleration, plasma heating, and mass motions

-particles get accelerated up to GeV energies
-plasma heated to temperatures of 10⁶ K or
larger

-mass motions up to a few thousand km/s
•Is a consequence of magnetic reconnection occurring high in the corona
•Involves all atmospheric layers, from the photosphere through the chromosphere & into the corona (even the heliosphere)
•Produces emissions across the EM spectrum
•Has different components: flare, coronal mass ejection, solar energetic particles

Early Stellar Flare Observations

Note on a peculiar variable star or Nova of short duration, by Ejnar Hertzsprung.

> The great change and quick decrease in brightness observed on 1924 Jan. 29 makes it improbable that this is a variable star of the RR Lyrae type observed only once near maximum. On 37 plates from 19 different nights the star is of normal faintness, while on a similar number of plates mostly from the same nights the star is distinctly fainter than at the observed maximum brightness. The supposition, that a sudden outburst of unusually short duration has here occurred seems to me to be the most plausible one. In that case the star will be of exceptional interest. A rough estimate indicates that a fall into the star of a body like a small planet would yield sufficient energy for an outburst as observed, but there may of course be other causes for the phenomenon,

To Start

- Stellar flares show many commonalities with solar flares which belies a common (perhaps not identical) physical mechanism.
- Stellar flare observations are necessarily limited in completeness and wavelength regimes compared to solar flare observations, but compensates in the rich variety of stars which can be studied.
- This enables the study of flares on stars of different ages to inform the range of conditions that the Sun may have experienced in the past.

Flares - temporal increase variations of some ambient s

We should consider a situation where flares are so free

The ambient state in that case is described by a whole of

Comparing large solar and stellar flares

	energy	max. duration	intensity increase (visible)	intensity increase (X-ray)
Sun	10 ³² ergs	~5 hours	I.00027	6000
young stars	10 ³⁶ ergs	~l day	small	50
single stars	10 ³⁵ ergs	several days	1000	1000
binary stars	10 ³⁸ ergs	~ I week	I.2	120

Demographics of Flaring Stars Seen at X-ray Wavelengths

Holistic approach finds agreement in manifestations of solar/stellar Flares

Flare Observational Signature	Solar Flares	Stellar Flares [*]			
In stars we see the flare but not the					
ELIV//soft X row omission (source)					
EUV/soft X-ray emission (corona)					
optical emission lines (chromosphere)					
cyan=impulsive phase, orange=gradual pl	nase * acro	oss different kinds of			

Multi-Wavelength Stellar Flare Studies

λ range	instruments	info	
radio (mm-m)	ALMA, JVLA, ATCA, MERLIN, LOFAR, GMRT	flux, polarization: gyrosynchrotron, coherent emission	
optical (3000- 7000 Å)	spectra, photometry	white light flares photosphere, chromosphere	
UV 900-3000 Å	IUE, HST, FUSE, GALEX	chromosphere, TR: flux, redshift, density	
EUV 80-350 Å	EUVE, Chandra/LETGS	corona: density, temperature, EM	
SXR 1.8-30 Å	ASCA, RXTE, BeppoSAX, Chandra, XMM-Newton, Swift	corona: temp., EM, abundance densities	
HXR 10-100 keV	Swift, BeppoSAX, Suzaku	corona: thermal/nonthermal	

Particle acceleration is manifested in different bands and energies: High energy: Soft/hard X-ray, EUV Low energy: radio

Kenneth R. Lang, Tufts University

Emissions are the results of

 Accelerated particles interaction with coronal/chromospheric/photospheric material
 Accelerated electrons

Osten et. al 2012

Planet Habitability

From the Living with a Red Dwarf project http://astronomy.villanova.edu/livingwithareddwarf

An factory representations, Eprill, Marc, Septime and Replace for scale CD is a research of time private in pravel to The scienced phile Transf Earlik, online schelerere Statistic, Painel candidates indicated with advectors.

TACHT FRE & OWNERS OF SPECIAL PROPERTY AND

What is the Alfven point/surface?

What is the Alfven point/surface?

$$v_{A}^{2} = \frac{B^{2}}{4\pi\rho} = \frac{p_{B}}{2\rho} \quad c_{s}^{2} = \frac{\gamma p}{\rho} \quad M_{A} = v/v_{A}$$
Alfven surface
$$v_{A}^{2} = \frac{B^{2}}{4\pi\rho} = \frac{p_{B}}{2\rho} \quad v_{A} = v/v_{A}$$
Super-Alfvenic

Possible unique conditions in a nearly sub-Alfvenic stellar wind regime:

Extreme space weather:

- 1. Extreme stellar radiation (EUV/Xray) photoevaporation of atmospheres
- 2. Extreme stellar wind
- 3. Coronal background temperature 1MK
- 4. High ambient density/pressure 1000x1AU
- 5. High ambient magnetic field >1000nT
- 6. Possible star-planet interaction
- 7. Fast orbital motion (3d=150 km/s)

Atmospheric stripping by the stellar wind:

o<mark>se</mark>-in terrestrial planets sustain an atmosphere

Proxima Centauri b

Trappist-1

Garraffo et. al 2016

Trappist-1f -Solar Corona (SC) model with an embedded planet

Trappist-1f -Global Magnetosphere (GM) model

To wrap things up...

I.Solar Vs. stellar physics II. Stellar evolution III. Coronae, winds, and astrosphers- in the context of the Sun and extrapolation to stars IV. Stellar evolution and magnetized winds and their role in stellar mass-loss rates and stellar spin-down V. Solar Vs. stellar Flares VI.Exoplanets and planet habitability

