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“Applied artificial intelligence research accelerator that 
combines the capabilities of NASA, academia, and private 

sector companies to tackle challenges not only important to 
NASA, but also to humanity’s future.”



Who: The Players…

Early-career PhD’s in AI/ML
Early-career PhD’s in Space Research
AI & Deep Science SME’s
NASA Stakeholders
Industry Partners
Academia



SETI enables 
the public / private 

partnership 



FDL private sector
partners provide

GPU compute, storage
and expertise



2016

2017

2018

PARTNERS SHOWN CONTRIBUTED TANGIBLE SUPPORT  

Public / Private partnership and 
international collaboration
= New synergies (and solutions)
for space agencies 



FDL by the Numbers

10 Partners
28 Researchers
36 Mentors
7 Teams
4 Domains
15 Countries

25 Universities
32 Speakers
10 Support Staff
8 Weeks
1 Boot Camp
1 Grand Finale

∞ Possibilities



FDL is a Global Community



FDL POST-DOC TEAMS ARE INTERDISCIPLINARY: 
50% DATA SCIENCE / 50% SPACE SCIENCES



BUT FIRST SOME CONTEXT…

NASA / BIG DATA / AI
WHAT ARE THE OPPORTUNITIES?

HOW CAN FDL HELP NASA MOVE FORWARD?



Artificial Intelligence : A Few Definitions

Machines Learning (ML): A branch of artificial intelligence in which a computer 
progressively improves its performance on a specific task by “learning” from data, 
without being explicitly programmed.

• Closely related to computational statistics, which focuses on prediction and 
optimization.

Data Mining: Discovering patterns in large data sets using techniques at the 
intersection of machine learning, statistics, and data management.

Deep Learning (DL):  An extension of Machine Learning that uses the 
mathematical concept of a neural network (NN) to loosely simulate information 
processing and adaptation patterns seen in biological nervous systems.

• Many problems which have been traditionally tackled with pensive coding 
have been overwhelmingly superseded by neural nets that outperform the 
humans that trained them.

• Exponential investment (patents, publications, funding) has fueled rapid 
advances in DL capabilities to make predictions, to identify anomalies, and 
even create new content that mimics what it has previously seen.

IMAGENET Annual Competition to accurately classify over 
10 million hand-annotated images

Statistical ML and hand-coded 
computer vision solutions

Deep Learning takes over

Super-human accuracy
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Artificial Intelligence (AI)

A computer which mimics cognitive functions typically associate with human intelligence. 
Examples :  goal seeking strategy formulation, complex image recognition, 

"learning", inference, and creative problem solving.



Statistical Machine Learning vs. Deep Learning

Deep Learning will discover these feature abstractions for itself.
Machine Learning needs help to extract features for statistical modeling.

Multiple ML models for each component of the Solar-Terrestrial Environment

Image courtesy NASA/JPL

Deep Learning can often discover features to learn from the entire system

Data Scale: When properly 
architected, the efficacy of 
DL systems continue to 
improve with more data, 
long after statistical models 
have plateaued.

Feature Discovery: Machine Learning often requires a human expert to 
create “feature extractors” that enable the statistical models to 
learn effectively, but Deep Learning finds these high-level features 
for itself (often with surprisingly creative results)

Interpretation: Machine Learning systems provide “visibility” into their statistical 
foundations, allowing their results to be  interpreted and explained. Deep 
Learning systems are more of a “black box”, although this is improving… and in 
some cases this is not an impediment (e.g. AI-enhanced science discovery)

Whole System: Machine Learning typically requires that complex systems be 
“chunked” into trainable components that are then manually recombined. 
Deep Learning can often “short circuit” that process and successfully model 
complex systems from end-to-end



Examples of Deep Learning in Space Science

Identification of Martian volcanic rootless cones within 
HiRISE images (96% classification accuracy)

Credit: Leon Palafox, 
University of Arizona  

Yashar D. Hezaveh et al. “Fast automated analysis of strong gravitational lenses 
with convolutional neural networks”, Nature, Aug 2017

Discovery of Dipoles using Neural Networks

Kevin Schawinski et al, Generative Adversarial Networks recover features in astrophysical 
images of galaxies beyond the deconvolution limit, Royal Astronomical Society, 2017

Deep Learning Enhanced Astrophysical Images

Neural Net Analysis of 
Mars HiRISE 

Images

Neural Network
discovery and 

analysis of 
gravitational lenses



Examples of Deep Learning in Space Science

Elena Rossi, et al. Discovery of hypervelocity stars using an artificial neural 
network with ESA Gaia data, European week of Astronomy and Space 

Science, 2017

Juan Felix San-Juan, International Round Table on Intelligent Control for Space 
Missions November 24, 2017

Applying Deep Learning AI techniques to
the Orbit Propagation Problem

Deep Learning Discovery of Hypervelocity Stars 



Why? To Accelerate Discovery & Understanding

Process Improvement:
3D asteroid shape modeling

Discovery:
Finding long-period comets

Understanding:
Forecasting solar behavior

Exploration:
Enabling autonomous navigation

Pace of Data Generation Far Exceeds Pace of Data Analysis



AI & Deep Learning at NASA

• Some Deep Learning exploratory projects are underway at NASA. Examples…

• NASA DeepSAT: A Deep Learning Approach to Tree-Cover Delineation in 1-m NAIP Imagery. (S. Ganguly, AGU 2016)
• Anomaly detection in aviation data using extreme learning machines. (V. Manikandan, et al. International Joint 

Conference on Neural Networks, 2016)
• Multi-Objective Reinforcement Learning-Based Deep Neural Networks for Cognitive Space Communications. (P.  

Ferreria, et al. NASA/TM–2017)

… but more experience is needed in order to establish an overarching strategy.

“Frontier Development Lab is proving its value at training early 

career professionals/students to apply modern data science 

techniques to sticky analysis problems confronting NASA science 

and exploration programs. […] The BDTF finds that this type of 

program aligns with its recommendations to NASA that there 

needs to be more formal, long term education as well as more 

short-form workshops dedicated to introducing modern data 

science methodologies as approaches for improving the 

discoveries in its vast science data archives.”

Source: Final Report of the Big Data Task Force, NASA Advisory 
Council Science Committee, 2017.
https://science.nasa.gov/science-committee/subcommittees/big-data-task-force 

• FDL provides a low-risk / low-cost mechanism for NASA to 
move forward:

• Program is managed by the SETI Institute, but with NASA 
guidance on the problem definitions 

• Private sector partnerships provide infrastructure, resources 
and much of the funding

• NASA experts participate, learn, and observe best practice: 
allows NASA’s strategy for AI to move forward in a more 
informed manner



• PROGRAM STRUCTURE
• RESULTS & PROGRESS
• FUTURE PLANS



3 projects in 2016 5 projects in 2017

Success driving Growth

7 projects in 2018



Snapshot Summary 
of 2017 Results

FDL FlareNet Neural Net  model learned 

to treat patterns of active regions as key 

predictors of solar flares

Deep Learning for crater detection as a 

step towards lunar resource planning –

error rates down to 2%!

Correlating solar wind to geomagnetic 

Kp Index – the machine learning model 

discovered the importance of ring 

currents with no a priori knowledge

Neural Net application to create asteroid 

3D shape model from radar data –

reduced time from weeks to hours

Automatic meteor shower detection to help find 

long-period comets… neural net model achieved 

88.6% precision in identifying meteors



• Intensive 8-week research program
• On-site teams for optimal collaboration
• Cloud-based computing provisioned by private sector



IBM’s Executive Project Manager 
briefs the FDL team on the compute resource

available for each team. 



Google’s Francois Chollet - inventor of the 
Keras.io framework briefs the FDL team.  

(Python for machine learning.) 



•Current operational flare forecasting relies on 
human morphological analysis of active 
regions and the persistence of solar flare 
activity. 

•The FDL team performed analyses of solar 
magnetic complexity and deployed 
convolutional neural networks to connect 
solar UV images taken by SDO/AIA into 
forecasts of maximum x-ray emissions.

•The technique has the potential to improve 
both the reliability and accuracy of solar flare 
predictions.



SPACE WEATHER: SOLAR STORM PREDICTION

Interdisciplinary Collaboration

Data scientist's view of HPHeliophysicist’s view of ML



SPACE WEATHER: SOLAR STORM PREDICTION

Types of Space Weather

26

FLARES

Electromagnetic 
Radiation

ENERGETIC PARTICLES

Particle
Radiation

MASS EJECTIONS

Massive Magnetic Ropes



SPACE WEATHER: SOLAR STORM PREDICTION

Types of Space Weather

27

FLARES ENERGETIC PARTICLES MASS EJECTIONS

Disruption of 
Communications

Satellite
Damage

Power grid
Disruption



SPACE WEATHER: SOLAR STORM PREDICTION

Why Solar Flare prediction is important?

28

FLARES ENERGETIC PARTICLES MASS EJECTIONS

Speed of Light
No warning

Relativistic speeds
20 minute warning

Non-relativistic speeds
20 hour warning



SPACE WEATHER: SOLAR STORM PREDICTION

How is a flare defined?

29

Using X-ray flux as measured by the GOES satellite



Based on a set of guidelines and human expertise:
Sunspot morphology and Persistence (assume the Sun does not change)

SPACE WEATHER: SOLAR STORM PREDICTION

How does NOAA forecast flares?



SPACE WEATHER: SOLAR STORM PREDICTION

Deep Learning

cs231n.github.io/classification



SPACE WEATHER: SOLAR STORM PREDICTION

Deep Learning

cs231n.github.io/classification



SPACE WEATHER: SOLAR STORM PREDICTION

Deep Learning

cs231n.github.io/classification

X-Ray Flux
3.2x10-5 W m-2



SPACE WEATHER: SOLAR STORM PREDICTION

Deep Learning

Deep learning has revolutionized the way we do image classification.



SPACE WEATHER: SOLAR STORM PREDICTION

Target Breakthroughs
Dataset Preparation: Take advantage of big data
Software: Build scientific process
Prediction: Enable Flare Forecasting
Science: Visualize Results

• Discover Flare Precursors
• Providing new physical insight
• New Physics?



SPACE WEATHER: SOLAR STORM PREDICTION

SDO/AIA Image Channels

Can we use deep learning 
to connect AIA images with 

flare strength?



SPACE WEATHER: SOLAR STORM PREDICTION

Deep Learning: Convolutional Networks

Neural networks with layers
made of tunable convolution

filters



SPACE WEATHER: SOLAR STORM PREDICTION

Deep Learning: Convolutional Networks

Several convolutional layers allow the neural network to recognize
features of increased complexity



SPACE WEATHER: SOLAR STORM PREDICTION

FlareNetFlareNet



SPACE WEATHER: SOLAR STORM PREDICTION

Memorization vs. Generalization

Our first goal was to see if the neural network could
connect AIA images with flare X-ray amplitude.

The concern is whether the neural network is simply
memorizing the images.

All flares used for training



SPACE WEATHER: SOLAR STORM PREDICTION

Memorization vs. Generalization

Our current neural network seems to be able to
generalize for weak flares (C-class), but not yet for
stronger flares .

Only flares observed 
prior to 2015 
used for training



SPACE WEATHER: SOLAR STORM PREDICTION

Memorization vs. Generalization

Our current biggest challenge is class imbalance!



SPACE WEATHER: SOLAR STORM PREDICTION

Analysis Scripts: Saliency

Simonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep Inside Convolutional 
Networks: Visualising Image Classification Models and Saliency Maps.

What does a convolutional neural network
pay attention to?



SPACE WEATHER: SOLAR STORM PREDICTION

Analysis Scripts: Saliency

Simonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep Inside Convolutional 
Networks: Visualising Image Classification Models and Saliency Maps.

?



SPACE WEATHER: SOLAR STORM PREDICTION

Analysis Scripts: Saliency

FlareNet is paying attention to the relative location of structures in different channels



SPACE WEATHER: SOLAR STORM PREDICTION

FlareNet’s filter activations

Several convolutional layers allow the neural network to 
recognize features of increased complexity



SPACE WEATHER: SOLAR STORM PREDICTION

FlareNet’s filter activations

Block 2
Filter 8 Texture

Block 3
Filter 7 Structure

Block 1
Filter 7 Color



SPACE WEATHER: SOLAR STORM PREDICTION

FlareNet’s filter activations

Block 2
Filter 8 Texture

Block 3
Filter 7 Structure

Block 1
Filter 7 Color

FlareNet learned the importance of
active regions



SPACE WEATHER: SOLAR STORM PREDICTION

Achievements

§ Developed a framework to apply CNNs to heliophysics 
problems.

§ Developed a CNN visualization framework to mine 
trained networks for physical insight.

§ Demonstrated the capability of CNNs to identify 
structures of flaring relevance.



SPACE WEATHER: SOLAR STORM PREDICTION

Future Work

Expand our data enhancement capabilities.

Explore the possibility of adding other instruments to 

increase our flare pool (Stereo, SOHO, GOES.)

Try alternative problem definitions besides regression 

(distribution, classification.).



•The vast amounts of data collected by satellites and 
observatories operated by government agencies such as 
NASA, NOAA and the US Geological Survey remains a 
largely untapped resource for discovering how the Sun 
interacts with Earth. 

•The FDL team built a knowledge discovery module named 
STING (Solar Terrestrial Interactions Neural Network 
Generator) on top of industry-standard, open source 
machine learning frameworks to allow researchers to 
further explore these complex datasets. 

•STING showed the ability to accurately predict the 
variability of Earth’s geomagnetic fields in response to solar 
driving - specifically the KP index. 

• In the process the tool discovered the imprint of the 
magnetospheric ring current in precursors of geomagnetic 
storms - an example of an AI derived discovery. 



SPACE WEATHER: SOLAR TERRESTRIAL INTERACTIONS

DATA SOURCES
GEOMAG DATA SOLAR WIND DATA



Planetary Kp Index
(Bartels, 1938)

Kp Index - refers to a range 
of geomagnetic activity 
levels within a 3-hr interval 
each day (in UT)

Kp varies from 0 to 9; quasi-
logarithmically

SPACE WEATHER: SOLAR TERRESTRIAL INTERACTIONS

Kp INDEX



SPACE WEATHER: SOLAR TERRESTRIAL INTERACTIONS

GRADIENT BOOSTING RESULTS

Prediction of 
Kp 3 hours 
ahead



SPACE WEATHER: SOLAR TERRESTRIAL INTERACTIONS

FEATURE DISCOVERY

Self-discovered Kp Index predictors:
- Solar wind magnetic field strength and Bz,
- Solar wind speed and proton density,
- Unexpected Result: N-S component of the 

geomagnetic field at low latitude stations (Guam, 
Hawaii, Puerto Rico). This points to the importance 
of the magnetospheric ring current. 

Machine learning extracted important physical 
parameters without a priori knowledge of the system.

This plot shows the relative importance of the physical parameters for Kp prediction.



•The FDL team tackled the task of automating 
task of creating 3D shape models of NEOs 
from sparse radar data

•The process currently takes up to four 
weeks of manual interventions by experts 
using established software. 

•The team demonstrated a pipeline for 
automation that allows NEOs to be modelled 
in several hours.

•This result will hopefully support 
researchers render 3D models of the current 
backlog of radar imaged asteroids. 



•Meteor showers caused by the previous-return ejecta 
of long period comets can guide deep searches, 
and improve warning time, for potentially hazardous 
long period comets that passed near Earth’s orbit in 
the past ten millennia.

•The FDL team showed how the data reduction of 
the ‘CAMS’ meteor shower survey program could be 
successfully automated by using deep learning 
approaches. 

•By using dimensionality reduction (t-SNEs) the team 
were able to identify yet uncatalogued meteor shower 
clusters - a promising direction for further 
investigation.



•Maps that detail the regions of interest in the dark 
polar regions are plagued by artefacts and shadow 
variability that severely hamper the planning of future 
prospecting missions. 

•A large dataset was compiled for the south polar 
region and high-level feature extraction was 
performed. Results showed an impressive speed-up of 
100x compared to human experts, with more than 
98.4% agreement when approaching a crater labelling. 

•This work represents a potential keystone to facilitate 
accessing water on the Lunar surface and future 
traverse planning.



• Focus on applied AI solutions using mainstream deep learning 
tools, thereby complementing and informing the research into 
novel AI technology being undertaken by other NASA teams.

• Strong incentive for the private sector to participate due to 
commercial opportunities that are implicit in the outcome; 

• Clear risk/cost reduction benefit to manned activities beyond 
LEO, and for cis-lunar operations in particular;

• Problem definitions for which relevant data has already been
collected and is available for use under an open license.

Closing Thoughts



• Solar flares and associated proton storms pose a significant risk to astronauts
beyond LEO, and offer little or no warning. The Apollo “near miss” of the August 1972 solar flare
provides a dramatic example of this concern.

• Multiple industry sectors have a vested commercial interest in seeing
improvements to solar flare predictions and better heliophysics modeling in
general. Examples include the power utilities, insurance companies,
communications and satellite operators, and the military.

• There are hundreds terabytes of well structured heliophysics data highly suited to deep learning 
applications, including the archives from SDO/AIA, ACE, and SOHO.

• The image-centric nature of solar data (e.g. SDO – HMI and AIA) makes it easy to leverage the 
rapid advances in image analysis that the AI community has contributed into open source.

• There are tantalizing indications that machine learning techniques can offer better predicative 
capabilities for the system science of space weather and the use of neural net deep learning will 
prove to be quite effective.

By way of example, consider the application of AI to Space Weather



NASA FRONTIER DEVELOPMENT LAB - FORMULA

Late-stage Phd / 
POST DOC in space sciences 

and data sciences 

Challenges which have a 
SPACE INDUSTRY 

STAKEHOLER 
strong narrative

and LOTS OF DATA

Commercial sector 
and academic partners
with DEEP AI and data 
capabilities or subject 

area interest. 

A culture
of ‘anything is

possible ‘

RESEARCH 
TALENT

CHALLENGE 
+ DATA

CAPITAL 
+ CAPACITY


