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Quasilinear Theory

(Yakimenko 1963; Kennel & Engelmann 1966; Stix 1992)
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Vlasov equation
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We want to use the Vlasov equation to figure out how the distribution
function evolves in the presence of plasma waves.

We could just solve (1) on a computer.

But aren’t there any organizing principles we could use to understand

wave-particle interactions? Is there a conceptual framework we could

use to reason out how the distribution function evolves over time in the
presence of plasma waves?

Let’s look for such a conceptual framework by solving (1) using a
perturbative technique.
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f:fO(wavat)+fl(wavat) B:BO_l_Bl(wat) E:E1($,t)

Bo is a uniform background magnetic field.
fo Is the background or equilibrium plasma distribution function

E+ and B represent a collection of waves, which could be slowly
growing or slowly decaying. We're going to treat £E1 and Bs as known.

f1 represents the response of the plasma to these waves

Our goal is to find how fo varies over times much longer than the wave
periods.



Quasilinear Theory

(Yakimenko 1963; Kennel & Engelmann 1966; Stix 1992)

O 1
a_{_l_v.Vf+%<E—|—EUXB)’va:O (1)

f:fo(w,v,t)+f1(w,v,t) B:BO_l_Bl(wat) E:El(wat)

Let’'s plug these expressions into (1), and then separately equate all the
“zeroth-order terms” and all the “first-order terms”.
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f:fO(wavat)+fl(wavat) B:BO_l_Bl(w?t) E:El(wat)

%CO +v-Vfy+ % (v X By) - Vyfo=0—= folz,v,t) = fo(vr,v)

Here, we are using cylindrical coordinates (v, v, 0) in velocity space, where
the cylindrical axis is aligned with By. Soon, we will set By — BgZ, and v
will become v.,.

(technically, fo varies in time over time scales much longer than the wave
periods. But here the variable t describes time variations over times
comparable to the wave periods, and fy doesn’t vary on this “fast” time scale.
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Now let’s collect all the “first-order” terms in (1).
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Difficult-looking equation. How do we solve this equation for
f1(x,v,t) if we know E1, B1, Bo, and fo?
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Difficult-looking equation. How do we solve this equation for
f1(x,v,t) if we know E1, B1, Bo, and fo?

Method of characteristics!
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Let fi(x,v,t) = fi(x(t),v(t),t), where dax/dt = v, dv/dt = (q/mc)(v x By):
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Solve for x(t) and v(t); integrate (2) to find fi; plug f1 into 3'd term in (1);
and average.



Single Particle Motion in a Uniform Magnetic Fleld
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— =
dt

dv

— - Y wxB

dt mc( 0)

By = Bgz — v, = constant v = \/ vz + vy = constant
qBo

Helical motion. Cyclotron frequency (2 = ——, gyroradius = p = v /€.
me
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Let fi(x,v,t) = fi(x(t),v(t),t), where dax/dt = v, dv/dt = (q/mc)(v x By):
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Solve for x(t) and wv(t); integrate (2) to find fi; plug fi into 3¢ term in (1);
and average. Then, after considerable algebra, you find:
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(Henceforth, we follow convention in dropping
the O subscript on f and the 1 subscript on the Es)
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Wave-Particle Resonance Condition
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o Consider 0E = §E cos(k - & — wt)
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o Consider §E = 6E cos(k - T — wt)

o etz =2o v;:I;t, where b = EO/BO

e Primed frame moves with particle guiding center



Wave-Particle Resonance Condition

2000000006 _
VU UUUUU B

Consider 6E = 6Eq cos(k - & — wt)

etz =2 v;;l’;t, where b = BO/BO

Primed frame moves with particle guiding center

Consider 0E = §Eq cos[k - & — (w — kv )t], where k) = k-b
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Consider 6 E = 6Eq cos(k - & — wt)

etz =2 va)t, where b = EO/BO

Primed frame moves with particle guiding center
Consider 6 E = §Eycos[k - & — (w — kv )t], where k) = k-b

w — kv = Doppler-shifted frequency in guiding center frame



Wave-Particle Resonance Condition
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Consider 6 E = 6Eq cos(k - & — wt)

etz =2 va)t, where b = EO/BO

Primed frame moves with particle guiding center
Consider 6 E = §Eycos[k - & — (w — kv )t], where k) = k-b
w — kv = Doppler-shifted frequency in guiding center frame

Wave-particle resonance when w — kv = nf2
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what kind of equation is this?

of . 0*f
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Physically, what is the difference between a system described
by the top equation, and a system described by the bottom

equation?
of _ . f
o~ Vo
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(G is a derivative along a curve of constant energy K’ in the “wave frame,”
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Solve for fi in terms of fo, E1, By; plug fi into 3' term in (1); average:
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So, particles diffuse in velocity space, along curves of constant energy in
the wave frame! (But only if they satisfy resonance condition.)
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Note that the diffusion coefficient here is related to [¢, x|* — i.e., the larger
the wave amplitudes, the faster the particles diffuse in velocity space.



Energy conservation in wave frame

Conisder a frame moving at @ = bw/k; with respect to the plasma

the wave frequency in this frame is w — kju =0

. . " 108
fluctuations are static: VX EF = ——— = (.

c Ot
— E=-V®
Energy gain = A€ = gA® — energy gain can not accumulate over time

Energy effectively conserved in this frame, but particle

direction can change (pitch-angle scattering).



Types of Resonant Wave-Particle Interactions

Wave-particle resonance condition:

U

A

resonant

Wkr — k”UH = nl).
- particles
Landau damping (LD): n = 0, -

—_— P

particles pushed by FE. 7

Transit-time damping (TTD): n = 0,
particles pushed by uV_EB.

Cyclotron damping (CD): n # 0. /

In the v — v, plane, resonant particles / /

diffuse along semi-circles centered on
v = wkr/k)|, because V x E =0 in the
wave frame. The condition £ = —V® k| k|
in the wave frame with ® bounded

means that there can be no secular

energy gain in the wave frame.

Hence, LD and TTD lead to parallel heating.
CD can lead to perpendicular heating.
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Example 1. lon Cyclotron Heating by
Parallel-Propagating Alfvéen/lon-Cylotron
Waves

(E.g., Hollweg & Isenberg 2002)



lon Cyclotron Heating

(E.g., Hollweg & Isenberg 2002)
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¢ When o0 — 0, J,(0) — 0 unless n = 0. (Jy(0) =1.)



lon Cyclotron Heating

(E.g., Hollweg & Isenberg 2002)

1 - . v
Uk = 7 Ep e’ Jny1(0) + Ek,le_qujn—l(g)]+%Ekz<]n(0-) oc=kivy/Q

¢ When o0 — 0, J,(0) — 0 unless n = 0. (Jy(0) =1.)

e Consider ions interacting with parallel-propagating (i.e., k; = 0) Alfvén/ion-
cyclotron waves with no parallel electric field (Ej, = 0).

e These waves are left circularly polarized, so Ej , = 0



lon Cyclotron Heating

(E.g., Hollweg & Isenberg 2002)

1 - . v
Uk = 7 Ep e’ Jny1(0) + Ek,le_qujn—l(g)]+%Ekz<]n(0-) oc=kivy/Q

¢ When o0 — 0, J,(0) — 0 unless n = 0. (Jy(0) =1.)

e Consider ions interacting with parallel-propagating (i.e., k; = 0) Alfvén/ion-
cyclotron waves with no parallel electric field (Ej, = 0).

e These waves are left circularly polarized, so Ej , = 0

e Of all the v, i, only one is non-zero — which one?



lon Cyclotron Heating

(E.g., Hollweg & Isenberg 2002)

1 - . v
Uk = 7 Ep e’ Jny1(0) + Ek,le_qujn—l(g)]+%Ekz<]n(0-) oc=kivy/Q

¢ When o0 — 0, J,(0) — 0 unless n = 0. (Jy(0) =1.)

e Consider ions interacting with parallel-propagating (i.e., k; = 0) Alfvén/ion-
cyclotron waves with no parallel electric field (Ej, = 0).

e These waves are left circularly polarized, so Ej , = 0
e Of all the v, i, only one is non-zero — which one?

e the only nonzero v, i 1s ¥1 k.



Quasilinear Theory

(Yakimenko 1963; Kennel & Engelmann 1966; Stix 1992)

This means that for protons interacting with parallel-propagating
Alfvéen/ion-cyclotron waves, out of this infinite sum, we need
only keep the n=1 term.

and for this term, the resonance condition is

Whr — kHUH = ()
o _ lim / Gvi6(wpr — kjop — n)|ni|*G f
ot V—o0 S DT BV’UJ_ r Il n, y
a=(1_ kH?)H 9, | ]CH”UJ_ 0
Wy ) OV Wi OV
1 - . v
Ynk = —= [Erre™®Jni1(0) + Exie @ Jp_1(0)]+—L Eodn(0) 0 =kiv, /9

ﬁ ; : vy



Alfvén/ion-cyclotron dispersion relation
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e Alfvén/ion-cyclotron waves heat only counter-propagating protons!
o if w/kH > 0, then v <O0.

e Since w < {2, the particle must propagate in the opposite direction as the
wave, so that it sees a frequency that is Doppler-boosted up to ().



At low [3, cyclotron heating results primarily in perpendicular heating

A
Can resonant
particles
i AON
// § — (this is the n=0 resonance, which
diffusion paths doesn’t arise for these left-circularly

/ _-@ . polarized parallel propagating waves)

// /// \\\

| / \

l [ \

| | ] >

(wWir — ©2) Whr Y
dl dl
2
~ 8mnkgT drnmy kBT _Vinhp
o (B, = > — =2 X 75— X =2—5.
B B My VA
e When 5p < 1, vgn,p K VA.
, . : W

e Alfvén/ion-cyclotron waves satisfy — ~ wa.

e — resonant particles diffuse to larger v, and to slightly smaller |v|.



Example 2: Self-Induced Scattering of Strahl Electrons
Verscharen, Chandran, Jeong, Salem, Pulupa, & Bale, ApJ, submitted. (arXiv:1906.02832v1)

 Why strahl electrons excite oblique whistlers, not parallel-
propagating whistlers.

* Analytic instability criterion for strahl-excited whistlers in a
low-beta plasma.

» Basic approach: use our qualitative understanding of
qguasilinear theory to determine the conditions under which
whistler waves gain energy by interacting with an electron
beam (the strahl) without losing energy to the core of the
electron velocity distribution.



when particles lose energy by resonating with a wave, the wave gains
energy and has a positive growth rate. Conversely, if the particles gain
energy, the wave is damped.

Ul

Y

w/k) T

Ustrahl

* When electrons resonate with a wave, they diffuse along arcs of
constant energy in a frame moving along Bo at speed w/k,.

* |[nstability requires

(Verscharen, Chandran, Jeong, Salem, Pulupa, & Bale, ApJ, submitted. (arXiv:1906.02832v1)



(Verscharen, Chandran, Jeong, Salem, Pulupa, &

(Note that Qe is negative) Bale, ApJ, submitted. (arXiv:1906.02832v1)
-0 +k v n=-1 resonance line
o/l e ’
AN
1__ " () e+_l{"VII (n=1 resonance line)
Wy
>
kllvAe/|Qe|
— 1+

e the resonace condition is wy — kjvy = nfle, or wr = nfd. + kjvy.
IRl ) Il

e Since the electrons driving the instability satisfy 0 < wy/ k|| < Ustranl, the
instability is driven by the n = +1 resonance, not n = —1.

e (n =0 won't work, because 0f/dv < 0 for solar-wind electrons, so elec-
trons would gain energy from an n = 0 resonance, damping the wave.)



We consider whistlers at wavelengths much larger than the electron
gyroradius. This means that o << 1 below.

of :
A = Vh—I>noo 2 / . BVUJ_G”UJ_(S(CU;CT — kv — nQ) | k|G f
jogy 9 ke 9
G=|(1- |
( Wi ) 6UJ_ Wi (%“
As o — 0, J,(0) = 0 unless n = 0.
1 . .
Une = 7 [Brre @1 (0) + Biie ™ Jn-a(0)] + :—'lEszn(a)

Since we’re dominated by n = +1, only the left circularly polarized com-

ponent of E contributes to the interaction. The parallel-propagating whistler,
which is right circularly polarized, is not excited. We thus need oblique whistlers,
with nonzero k,, which are elliptically polarized and have a left circularly po-
larized component.

(Verscharen, Chandran, Jeong, Salem, Pulupa, & Bale, ApJ, submitted. (arXiv:1906.02832v1)



What is the Minimum Unstable Strahl Speed?

1
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Figure 3. Dispersion relation and resonance conditions for the FM/W mode
with 6 = 60° in regime 2. The black line shows Equation (14). The blue and
green areas show Equations (16) and (17), respectively, and the red line shows
Equation (13) with Us = 3w.. We use we = 0.2va.. This situation represents
a marginally stable state for the FM/W instability.

(Verscharen, Chandran, Jeong, Salem, Pulupa, & Bale, ApJ, submitted. (arXiv:1906.02832v1)



When Are Oblique Whistler Unstable?

(Verscharen, Chandran, Jeong, Salem, Pulupa, & Bale, ApJ, submitted. (arXiv:1906.02832v1)

When they cause the strahl to lose energy, but are
not damped by thermal electrons in the core.

(), +3kv,, — strahl resonance line for vj = 3vin

kv,,— resonance line for core Landau damping
Q |-k v, — resonance line for core cyclotron
>k damping

Need Ustrahl Z thh

(but this only works when beta is small, otherwise the dispersion relation
is in the Landau-damped region.)



Parenthetical comment: in case you're interested, at higher [3, the whistlers are

Landau damped, and the instability threshold on the strahl speed increases.
Verscharen, Chandran, Jeong, Salem, Pulupa, & Bale, ApJ, submitted. (arXiv:1906.02832v1)

] ) _
2McVth,cVth sV, (1 + cos 6)

1/4

Us,min —

10 ——— e

NHDS: ngs = 0.02n0. ——— |
NHDS: ngs = 0.04nge ------ ]
NHDS: ngs = 0.06n¢c ~------- .
Equation (19): ngs = 0.04ng., 0 = 60°
Equation (21) —-—-— :

C@/UAe

001 L .. .
0.1 1
uk/UAe

Figure 4. Comparison of Equations (19) and (21) with numerical solutions
of the hot-plasma dispersion relation from our NHDS code. The orange and
blue lines show Equations (19) and (21), except that the =>-signs have been
replaced with equal-signs. We use ws = 2w and Top, = Toc. For the numerical

solutions, we show isocontours of constant maximum growth ~y; = 1073 Qe |

with vap/c = 107*. The analytical solutions use 6 = 60°, while the numer-
ical solutions are evaluated at the angle for which the lowest Us leads to a

maximum growth rate of v = 1073 | |.
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Figure 6. Data distribution of the analyzed solar-wind interval in the ng/ Nop
vs. Us/vae plane. The color-coding shows the probability density in the
corresponding bin in arbitrary units. The black line shows the isocontour of
maximum growth rate vy, = 1073 || for the oblique FM/W instability from
our NHDS solutions. The red dashed line shows Equation (19) for 6 = 60°,
and we = vae = Ws.



Other examples: deceleration of alpha-
particle beams by fast-magnetosonic
waves, cosmic-ray streaming instability,
limits on proton temperature anisotropy
from firehose, mirror, and cyclotron waves,



Outline

\/ l. The Lost Art of Quasilinear Theory.

A. 1on cyclotron heating

B. self-induced scattering of the electron
strahl by oblique whistler waves

C. (deceleration of alpha-particle beams,
limits on proton temperature anisotropy)

Dissipation of Solar-Wind Turbulence by
Non-Resonant Stochastic lon Heating



Coronal Heating and Solar-Wind Acceleration by Waves
(Parker 1965, Coleman 1968, Velli et al 1989, Zhou & Matthaeus 1989, Cranmer et al 2007)
wave feﬂection

4
k
o f ;k
Sun s & /\/\/§O/' H WIND
ks
e-

He™

7 wave launching
- : . k2 wave-particle
wave coupling interactions

& turbulence
field lines

* The Sun launches Alfven waves, which transport energy outwards

* The waves become turbulent, which causes wave energy to ‘cascade’
from long wavelengths to short wavelengths

» Short-wavelength waves dissipate, heating the plasma. This increases
the thermal pressure, which, along with the wave pressure, accelerates
the solar wind.



Key Problem: Can Turbulence Explain the
Perpendicular lon Heating Observed in the Corona”

108;— R ﬂi + } ‘

106; IH}H E E

These are perpendicular temperatures inferred from line widths
observed at the Sun’s limb.

Protons in the corona and low-[3 fast-solar-wind streams satisfy T. > T



Stochastic Heating by Strong Alfven-Wave (AW) and
kinetic-Alfven-wave (KAW) Turbulence

At
energy cascades
primarily to larger k|

—— > -,
‘; k.

energy input

Because the AW trequency is w = kjva, the small-scale
AWSs produced by the cascade have low frequencies

Does the dissipation of low-frequency, strong AW/KAW
turbulence cause “perpendicular” ion heating, and if so, how?



Magnetic Moment Conservation

If an ion’s orbit is nearly periodic in the plane perpendicular
to B, and if the frequencies of the fluctuating electric and
magnetic fields are much smaller than the ion’s cyclotron
frequency, then the ion’s magnetic moment p is almost
exactly conserved (Kruskal 1962), where

2
mv,

=B

Possible route to perpendicular heating from low-frequency
AW turbulence: if the gyro-scale fluctuations are large
enough, then an ion’s orbit becomes “stochastic,” and J is

not conserved. (McChesney, Stern, & Bellan 1987; Johnson & Cheng
2001; Chen, Lin, & White 2001; Chaston et al 2003; Voitenko & Goosens 2004)



Criterion for Stochasticity in Low-f3 Plasmas

Let Ovpand 0B, be the rms amplitudes of the velocity and
magnetic field fluctuations at k. pi = 1.

Stochasticity Criterion (McChesney, Stern, & Bellan 1987; Chaston et al
2004; Chandran et al 2010):

£ =8V, /v. ~O(1)

Implies that the fractional change in an ion’s K.E. during a
single gyro-orbit is of order unity.

o _ VA 0% _ gz 0B,

on V] VA By

For protons,

To achieve the heating rate in the corona, does d0v, / v. need
to be = 1, or is a smaller value sufficient?



What Physical Process Energizes the lons?

e When a particle “rolls over” a rising “potential-energy hill,” the hill
Is shorter when the particle rolls up and higher when the particle
rolls down, so the particle gains kinetic energy.



Stochastic Heating by AWs, KAWSs, or Strong RMHD/
KAW Turbulence

(Chandran, Li, Rogers, Quataert, & Germaschewski, ApJ, 720, 503, 2010.

Much earlier related work by, e.g., McChesney et al 1987, Karimabadi et al 1994, Chen et al
2001, Johnson & Cheng 2001, Chaston et al 2004, Fiksel et al 2009)

Particles diffuse in both space and energy. Derivation based

on phenomenological arguments at eads to:

c1(0v,)? Co

QL =—"""@xp (-7)

Here p is the ion gyroradius, 0v, Is the rms velocity at scale p,
and € = 0vp/v.. The dimensionless constants ¢4+ and c2 depend

on whether the fluctuations are waves or turbulence and on
the degree of intermittency.



Numerical Simulations of Test-Particle Protons Interacting with
Either KAWS or Strong RMHD Turbulence.
(RMHD turbulence: Xia, Perez, Chandran, & Quataert 2013)
(KAWSs: Chandran, Li, Rogers, Quataert, & Germaschewski, ApJ, 720, 503, 2010)

0.000]. E | | FT III| | FT IIIE
C A 10242x256
105 & --- ¢, = 0.21 =
B 1070 E
Q, — -
S - .
N - .
4 107 ¢ =
<y - -
108 £ Pl ox Kaws =
- = 0.34 -

10—9 ] ] || lllll ] 1 1 1 11
0.01 0.1 1



Important Point: Stochastic Heating is
Inherently Self-Limiting at Low Beta

(Chandran 2010)
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e As T. increases, = 107¢

€ = OVp/V. decreases,
and Q. decreases

as a result.
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lon Temperature Profiles from Stochastic Heating
(Chandran 2010)
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Observational Test of Stochastic Proton Heating at 0.3 AU to 0.64 AU

8x10%

(Bourouaine & Chandran 2013)
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Left panel: we evaluate an “empirical” perpendicular heating rate from the measured
values of U and T.(r) in Helios data for the fast solar wind (Marsch et al 1983).

We use Helios data to measure 0B, (middle panel), set dvp, = ovadBp/Bo , and use this
value of dvp to determine the stochastic heating rate, with 0=1.19.

We then find the values of ¢1 and c2 for which Q Lempirical = Q_Lstoch (right panel). Lower error
bar corresponds to 0=1, and upper error bar corresponds to 0=1.38.



Conclusion



e (Quasilinear theory is a powertul tool for understanding resonant wave-
particle interactions and involves three organizing principles:

1. resonance condition: w — kv = nf?
2. particle energy is conserved in the wave frame
3. right (left) circularly polarized waves at k| p < 1 interact only through

the n = —1 (n = 1) resonance.

e At a conceptual level, quasilinear theory can be used to deduce important
properties of wave-particle interactions, including the following:

— parallel-propagating Alfvén /ion-cyclotron waves interact only with
counter-propagating protons and at low (8 cause primarily perpen-
dicular ion heating

— the electron strahl excites primarily oblique whistler waves, which at
low 8 become unstable when Vitran 2 30th e-

e Strong Alfvén-wave/kinetic-Alfvén-wave turbulence causes perpendicular
ion heating through a non-resonant process called stochastic ion heating.

e Simulations are a valuable tool, but even if you are a computational expert,
study theory caretully, because it provides crucial insights into numerical
and experimental data.



