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What is the Solar Wind?

(ESA)

• Quasi-continuous, radial outflow of particles from the Sun 

• Fast (300 - 800 km/s), hot and dilute (105 K, 5 cm-3 at 1 AU) 

• Plasma:  behaves like a fluid, but it generates and is in turn 
influenced by electromagnetic fields



The Solar Wind in Relation to the Sun

• it is the extension of 
the solar atmosphere 

• represents about 
10-6 of the energy 
output of the Sun 

• mass loss rate is 
about 10-14 Msun yr 

-1 (NASA)



Solar-Wind Structure Depends on the Solar Cycle

• “Solar minimum” - very few sunspots. 

• “Solar maximum” - many sunspots, solar flares, and 
coronal mass ejections.

G. Piopol/stargazer.net



(McComas et al 2003)

3D Structure Near Solar Minimum

• Fast wind (700-800 km/s) is 
the basic state of the flow 
near solar minimum 

• Fast wind emanates 
primarily from open-field-line 
regions near the poles - 
“polar coronal holes”  

• Slow wind (300-500 km/s) is 
confined to low latitudes 
(less so at solar maximum)



(McComas et al 2003)

3D Structure Near Solar Maximum

• much more complex 

• alternates between fast and 
slow wind at virtually all 
heliographic latitudes

Ulysses



What Causes the Different Speeds of the 
Fast Wind and Slow Wind?

• Near the Sun, the solar wind flows along magnetic flux tubes. 

• When the flux-tube cross section increases rapidly with increasing r, 
the outflow remains fairly slow in the low corona. This allows more 
heat to be conducted back to the Sun, removing energy from the 
wind, and reducing the asymptotic wind speed.

(Cranmer 2005)
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What Is Turbulence?

Operational definition for turbulence in 
plasmas and fluids: turbulence consists of 
disordered motions spanning a large range 
of length scales and/or time scales.
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Canonical picture: larger eddies break up into 

smaller eddies

“Energy Cascade” in Hydrodynamic Turbulence



Plasma Turbulence Vs. Hydro Turbulence

• In plasmas such as the solar wind, 
turbulence involves electric and magnetic 
fields as well as velocity fluctuations.  

• In some cases the basic building blocks of 
turbulence are not eddies but plasma waves 
or wave packets. 



Where Does Turbulence Occur?

• Atmosphere (think about your last plane 
flight). 

• Oceans. 

• Sun, solar wind, interstellar medium, 
intracluster plasmas in clusters of 
galaxies...



What Causes Turbulence?

• Instabilities: some source of free energy 
causes the amplification of fluctuations 
which become turbulent. Example: 
convection in stars. 

• Stirring. Example: stirring cream into 
coffee. 

• Requirement: the medium can’t be too 
viscous. (Stirring a cup of coffee causes 
turbulence, but stirring a jar of honey does 
not.)



What Does Turbulence Do?

• Turbulent diffusion or mixing. Examples: 
cream in coffee, pollutants in the 
atmosphere. 

• Turbulent heating. When small-scale 
eddies (or wave packets) dissipate, their 
energy is converted into heat. Example: 
the solar wind.
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In Situ Measurements

solar wind

spacecraft

R

T
N

Quantities measured include v, B, E, n, and T

(E.g., Helios, ACE, Wind, 
STEREO...)

RTN 
coordinates
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corrected for aberration due to the spacecraft 
motion). The two lower curves on the plot are 
proton number density and magnetic field 
strength ((B) = 5.3 % (N) = 5.4 cm-3). This 
period is one of the better examples of the waves 
and illustrates their most characteristic features: 
close correlation between b and v, variations in b 
comparable to the field strength, and relatively 
little variation in field strength or density. In 
this case the average magnetic field is inward 
along the spiral and the correlation between 
b and v is positive; when the magnetic field is 
outward the correlation in periods of good waves 
is negative. This indicates outward propagation 
(see equation 1). 

The scale ratio used for plotting the magnetic 
field and velocity variations in Figure i corre- 
sponds to a value of D• -• of 6.4 km 
This was determined by the condition that, 
when this ratio is used for a fixed area plot 
of v• versus b• for all the data, the stun of the 
squares of the perpendicular distances from 
the points to a line of unit slope is minimized. 
(Mathematically this gives D• -• = 
the ratio of the standard deviations.) The 
average values of N and N, during this per- 
iod are 5.4 and 0.4 cm -3, respectively; thus 
equation i with • = i gives D• -• = 8.2 km 
sec-•/-F. We feel that the discrepancy between 
this predicted value and the observed value of 6.4 
is significant and probably is due to the anisot- 

ropy in the pressure. This requires that 4•r 
{•, -- p•_)/Bo • be 0.40. The average during 
this period of (2kTo/m•)•% the most probable 
proton velocity, was observed to be 47 km/sec, 
which corresponds to 4•'p•/B 0 • = 0.5, where p• is 
the mean proton pressure. With reasonable 
values of the electron and a pressures and of the 
pressure anisotropy [Hundhausen et al., 1967], the 
required value of •a seems entirely reasonable. 
On other occasions when /• = 8•rp•/Bo • is 
smaller, values of • closer to unity would be 
expected. 

Waves versus discontinuities. Figure 2 is an 
expanded plot of three particular 10-rain periods 
indicated on Figure 1, where the crosses are the 
basic magnetometer data (one reading in 
approximately 4 sec) and the lines are the plasma 
data (1 per 5.04 rain), scaled in the same ratio as 
in Figure 1. On this time scale, the waves may be 
either gradual (2b) or discontinuous (2a, 2c), with 
abrupt changes within 4 sec. As discussed below, 
we feel that all three examples are Alfv•nic, 
with continuous magnetic field lines, but with a 
discontinuity in direction in cases 2a and 2c. 
Such abrupt changes occur at a rate of about i per 
hour and are enmeshed in more gradual changes. 

The visual appearance of the field fluctuations 
is qualitatively different on the time scales of 
Figures i and 2. With the scale used in Figure 2, 
the most prominent structures are the abrupt 
changes that tend to be preceded and followed by 

Spacecraft Measurements of the Magnetic Field and Velocity 

Data from the Mariner 5 spacecraft  (Belcher & Davis 1971)
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corrected for aberration due to the spacecraft 
motion). The two lower curves on the plot are 
proton number density and magnetic field 
strength ((B) = 5.3 % (N) = 5.4 cm-3). This 
period is one of the better examples of the waves 
and illustrates their most characteristic features: 
close correlation between b and v, variations in b 
comparable to the field strength, and relatively 
little variation in field strength or density. In 
this case the average magnetic field is inward 
along the spiral and the correlation between 
b and v is positive; when the magnetic field is 
outward the correlation in periods of good waves 
is negative. This indicates outward propagation 
(see equation 1). 

The scale ratio used for plotting the magnetic 
field and velocity variations in Figure i corre- 
sponds to a value of D• -• of 6.4 km 
This was determined by the condition that, 
when this ratio is used for a fixed area plot 
of v• versus b• for all the data, the stun of the 
squares of the perpendicular distances from 
the points to a line of unit slope is minimized. 
(Mathematically this gives D• -• = 
the ratio of the standard deviations.) The 
average values of N and N, during this per- 
iod are 5.4 and 0.4 cm -3, respectively; thus 
equation i with • = i gives D• -• = 8.2 km 
sec-•/-F. We feel that the discrepancy between 
this predicted value and the observed value of 6.4 
is significant and probably is due to the anisot- 

ropy in the pressure. This requires that 4•r 
{•, -- p•_)/Bo • be 0.40. The average during 
this period of (2kTo/m•)•% the most probable 
proton velocity, was observed to be 47 km/sec, 
which corresponds to 4•'p•/B 0 • = 0.5, where p• is 
the mean proton pressure. With reasonable 
values of the electron and a pressures and of the 
pressure anisotropy [Hundhausen et al., 1967], the 
required value of •a seems entirely reasonable. 
On other occasions when /• = 8•rp•/Bo • is 
smaller, values of • closer to unity would be 
expected. 

Waves versus discontinuities. Figure 2 is an 
expanded plot of three particular 10-rain periods 
indicated on Figure 1, where the crosses are the 
basic magnetometer data (one reading in 
approximately 4 sec) and the lines are the plasma 
data (1 per 5.04 rain), scaled in the same ratio as 
in Figure 1. On this time scale, the waves may be 
either gradual (2b) or discontinuous (2a, 2c), with 
abrupt changes within 4 sec. As discussed below, 
we feel that all three examples are Alfv•nic, 
with continuous magnetic field lines, but with a 
discontinuity in direction in cases 2a and 2c. 
Such abrupt changes occur at a rate of about i per 
hour and are enmeshed in more gradual changes. 

The visual appearance of the field fluctuations 
is qualitatively different on the time scales of 
Figures i and 2. With the scale used in Figure 2, 
the most prominent structures are the abrupt 
changes that tend to be preceded and followed by 

• The velocity and magnetic field in these measurements 
appear to fluctuate in a random or disordered fashion. 

• But how do we tell whether there are “velocity 
fluctuations spanning a large range of scales,” as in our 
operational definition of turbulence? 

• One way: by examining the power spectrum of the 
fluctuations.

Is This 
Turbulence?



The Magnetic Power Spectrum

• B(t) is the magnetic field vector measured at the spacecraft location. 

• T is the duration of the measurements considered. (When power 
spectra are computed using real data, T can not be increased 
indefinitely; the resulting power spectra are then approximations of 
the above formulas.) 

• <...> indicates an average over many such measurements.

Fourier transform 
of magnetic field

power spectrum

~̃B(f) =

Z T/2

�T/2

~B(t) e2⇡ift dt

P (f) = lim
T!1

1

T
h ~̃B(f) · ~̃B(�f)i



The Magnetic Power Spectrum

Fourier transform 
of magnetic field

power spectrum

~̃B(f) =

Z T/2

�T/2

~B(t) e2⇡ift dt

P (f) = lim
T!1

1

T
h ~̃B(f) · ~̃B(�f)i

• B(f) can be thought of as the part of B that 
oscillates with frequency f.  

• When turbulence is present, P(f) is non-negligible 
over a broad range of frequencies. Typically, P(f) 
has a power-law scaling over frequencies varying 
by one or more powers of 10.



Magnetic Power Spectra in the Solar Wind
34 Roberto Bruno and Vincenzo Carbone

from these observations (Bavassano et al., 1982b; Denskat and Neubauer, 1983). In Figure 23 we
re-propose similar observations taken by Helios 2 during its primary mission to the Sun.
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Figure 23: Power density spectra of magnetic field fluctuations observed by Helios 2 between 0.3
and 1 AU within the trailing edge of the same corotating stream shown in Figure 17, during the
first mission to the Sun in 1976. The spectral break (blue dot) shown by each spectrum, moves to
lower and lower frequency as the heliocentric distance increases.

These power density spectra were obtained from the trace of the spectral matrix of magnetic
field fluctuations, and belong to the same corotating stream observed by Helios 2 on day 49, at
a heliocentric distance of 0.9 AU, on day 75 at 0.7 AU and, finally, on day 104 at 0.3 AU. All
the spectra are characterized by two distinct spectral slopes: about �1 within low frequencies and
about a Kolmogorov like spectrum at higher frequencies. These two regimes are clearly separated
by a knee in the spectrum often referred to as “frequency break”. As the wind expands, the
frequency break moves to lower and lower frequencies so that larger and larger scales become part
of the Kolmogorov-like turbulence spectrum, i.e., of what we will indicate as “inertial range” (see
discussion at the end of the previous section). Thus, the power spectrum of solar wind fluctuations
is not solely function of frequency f , i.e., P (f), but it also depends on heliocentric distance r, i.e.,

Living Reviews in Solar Physics
http://www.livingreviews.org/lrsp-2005-4

(Bruno & Carbone 2005)

Is This Turbulence? 

Yes - the magnetic 
fluctuations measured 

by the spacecraft span a 
broad range of 

timescales. 

Similar spectra are 
observed at all locations 
explored by spacecraft 

in the solar wind.



What Causes the Time Variation Seen in 
Spacecraft Measurements?

vphase

• Consider a traveling plasma wave (more on plasma waves soon).  
Imagine you’re viewing this wave as you move away from the Sun at 
the same velocity as the solar wind. From your perspective, the time 
variation of the magnetic field is the result of the wave pattern moving 
past you at the wave phase speed relative to the solar-wind plasma, 
vphase, which is typically ≈30 km/s in the solar wind near Earth. 

• If the wavenumber of the wave is k, the angular frequency of the 
magnetic field in this case is kvphase. This frequency characterizes the 
“intrinsic time variations” of the magnetic field in the solar wind frame.



But What if You Measure B Using a “Stationary” 
Spacecraft That Does Not Move with the Solar Wind?

• Near Earth, the speed at which the solar wind flows past a satellite is highly supersonic, 
typically >10vphase, where vphase is the phase speed in the plasma rest frame. 

• “Taylor’s Frozen-Flow Hypothesis”: Time variation measured by a spacecraft results 
primarily from the advection of spatially variations past the spacecraft at vsolar-wind , not 
from the “intrinsic time variation” in the plasma frame. E.g., the spacecraft would see 
almost the same thing if the fields were static in the solar-wind frame. 

• If a wave with wavevector k is advected past the spacecraft (i.e., δB∝e
ik⋅x

), and the 
wave is static in the solar-wind frame, the spacecraft measures a magnetic oscillation 
with angular frequency ω = 2πf  = k⋅vsolar-wind.  

• Frequencies measured by a spacecraft thus tell us about k (spatial structure) rather than 
the intrinsic time variation that would be seen in the plasma rest frame. 

vphase

vsolar-wind

satellite



Taylor’s Frozen-Flow Hypothesis
34 Roberto Bruno and Vincenzo Carbone

from these observations (Bavassano et al., 1982b; Denskat and Neubauer, 1983). In Figure 23 we
re-propose similar observations taken by Helios 2 during its primary mission to the Sun.
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Figure 23: Power density spectra of magnetic field fluctuations observed by Helios 2 between 0.3
and 1 AU within the trailing edge of the same corotating stream shown in Figure 17, during the
first mission to the Sun in 1976. The spectral break (blue dot) shown by each spectrum, moves to
lower and lower frequency as the heliocentric distance increases.

These power density spectra were obtained from the trace of the spectral matrix of magnetic
field fluctuations, and belong to the same corotating stream observed by Helios 2 on day 49, at
a heliocentric distance of 0.9 AU, on day 75 at 0.7 AU and, finally, on day 104 at 0.3 AU. All
the spectra are characterized by two distinct spectral slopes: about �1 within low frequencies and
about a Kolmogorov like spectrum at higher frequencies. These two regimes are clearly separated
by a knee in the spectrum often referred to as “frequency break”. As the wind expands, the
frequency break moves to lower and lower frequencies so that larger and larger scales become part
of the Kolmogorov-like turbulence spectrum, i.e., of what we will indicate as “inertial range” (see
discussion at the end of the previous section). Thus, the power spectrum of solar wind fluctuations
is not solely function of frequency f , i.e., P (f), but it also depends on heliocentric distance r, i.e.,

Living Reviews in Solar Physics
http://www.livingreviews.org/lrsp-2005-4

(Bruno & Carbone 2005)

The frequency 
spectra measured 

by satellites 
correspond to 
wavenumber 
spectra in the 

solar-wind frame.
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corrected for aberration due to the spacecraft 
motion). The two lower curves on the plot are 
proton number density and magnetic field 
strength ((B) = 5.3 % (N) = 5.4 cm-3). This 
period is one of the better examples of the waves 
and illustrates their most characteristic features: 
close correlation between b and v, variations in b 
comparable to the field strength, and relatively 
little variation in field strength or density. In 
this case the average magnetic field is inward 
along the spiral and the correlation between 
b and v is positive; when the magnetic field is 
outward the correlation in periods of good waves 
is negative. This indicates outward propagation 
(see equation 1). 

The scale ratio used for plotting the magnetic 
field and velocity variations in Figure i corre- 
sponds to a value of D• -• of 6.4 km 
This was determined by the condition that, 
when this ratio is used for a fixed area plot 
of v• versus b• for all the data, the stun of the 
squares of the perpendicular distances from 
the points to a line of unit slope is minimized. 
(Mathematically this gives D• -• = 
the ratio of the standard deviations.) The 
average values of N and N, during this per- 
iod are 5.4 and 0.4 cm -3, respectively; thus 
equation i with • = i gives D• -• = 8.2 km 
sec-•/-F. We feel that the discrepancy between 
this predicted value and the observed value of 6.4 
is significant and probably is due to the anisot- 

ropy in the pressure. This requires that 4•r 
{•, -- p•_)/Bo • be 0.40. The average during 
this period of (2kTo/m•)•% the most probable 
proton velocity, was observed to be 47 km/sec, 
which corresponds to 4•'p•/B 0 • = 0.5, where p• is 
the mean proton pressure. With reasonable 
values of the electron and a pressures and of the 
pressure anisotropy [Hundhausen et al., 1967], the 
required value of •a seems entirely reasonable. 
On other occasions when /• = 8•rp•/Bo • is 
smaller, values of • closer to unity would be 
expected. 

Waves versus discontinuities. Figure 2 is an 
expanded plot of three particular 10-rain periods 
indicated on Figure 1, where the crosses are the 
basic magnetometer data (one reading in 
approximately 4 sec) and the lines are the plasma 
data (1 per 5.04 rain), scaled in the same ratio as 
in Figure 1. On this time scale, the waves may be 
either gradual (2b) or discontinuous (2a, 2c), with 
abrupt changes within 4 sec. As discussed below, 
we feel that all three examples are Alfv•nic, 
with continuous magnetic field lines, but with a 
discontinuity in direction in cases 2a and 2c. 
Such abrupt changes occur at a rate of about i per 
hour and are enmeshed in more gradual changes. 

The visual appearance of the field fluctuations 
is qualitatively different on the time scales of 
Figures i and 2. With the scale used in Figure 2, 
the most prominent structures are the abrupt 
changes that tend to be preceded and followed by 

Question: in the data below, the v and B fluctuations are highly 
correlated --- what does this mean? We’ll come back to this...

Data from the Mariner 5 spacecraft  (Belcher & Davis 1971)
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 Magnetohydrodynamics (MHD)
• In order to understand the power spectra seen in 

the solar wind, we need a theoretical framework for 
analyzing fluctuations on these lengthscales and 
timescales. 

• In the solar wind near Earth, phenomena occurring 
at large length scales (exceeding ≈300 km) and 
long time scales (e.g., exceeding ≈10 s) can be 
usefully described within the framework of a fluid 
theory called magnetohydrodynamics (MHD).  

• In MHD, the plasma is quasi-neutral, and the 
displacement current is neglected in Maxwell’s 
equations (since the fluctuation frequencies are 
small). 
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velocity magnetic field

pressure

ratio of specific heats

(The phrase “ideal MHD” means that dissipative terms involving viscosity and 
resistivity have been neglected. I’ll come back to these terms later.)
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Ideal, Adiabatic MHD
mass 

conservation

“continuity
equation” @⇢
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Ideal, Adiabatic MHD
Newton’s 2nd 

law@⇢
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adiabatic evolution.
the specific entropy 
[∝ln(p/ργ)] of a fluid 
element does not 
change in time.

Ideal, Adiabatic MHD

(An alternative, simple approximation is the isothermal approximation, in 
which p = ρcs2, with the sound speed cs = constant. More generally, this 

equation is replaced with an energy equation that includes thermal 
conduction and possibly other heating and cooling mechanisms.)
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Ideal, Adiabatic MHD
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Ohm’s Law for
a perfectly 
conducting

plasma



Ideal, Adiabatic MHD
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• Magnetic forces: magnetic pressure and magnetic tension 

• Frozen-in Law: magnetic field lines are like threads that are frozen to 
the plasma and advected by the plasma



Waves: small-amplitude oscillations 
about some equilibrium
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wavelength λ = 2π/k 

decreasing λ ⇔ increasing k 

energy cascades to small λ, or 
equivalently to large k



As an example, let’s look at MHD Waves in 
“low-beta” plasmas such as the solar corona. 
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Plasma Waves at Low Beta

magnetic tension magnetic pressure thermal pressure

undamped weakly damped strongly damped

Alfvén wave fast magnetosonic 
wave

slow magnetosonic 
wave

w = kkvA w = kvA w = kkcs

magnetic  
field lines

(like a wave 
propagating on a 

string)



Plasma Waves at Low Beta

magnetic tension magnetic pressure thermal pressure

undamped weakly damped strongly damped

Alfvén wave fast magnetosonic 
wave

slow magnetosonic 
wave

w = kkvA w = kvA w = kkcs

vA = B/
p

4pr ←  “Alfvén speed”



Plasma Waves at Low Beta

magnetic tension magnetic pressure thermal pressure

undamped weakly damped strongly damped

Alfvén wave fast magnetosonic 
wave

slow magnetosonic 
wave

w = kkvA w = kvA w = kkcs

vA = B/
p

4pr sound speed cs = (γp/ρ)1/2



Plasma Waves at Low Beta

magnetic tension magnetic pressure thermal pressure

virtually undamped 
in collisionless plasmas 

like the solar wind

damped in collisionless plasmas 
(weakly at β<<1,  
strongly at β≈1)

strongly damped 
in collisionless plasmas

Alfvén wave fast magnetosonic 
wave

slow magnetosonic 
wave

w = kkvA w = kvA w = kkcs



Properties of Alfvén Waves (AWs)
• Two propagation directions: parallel to

~B0 or anti-parallel to

~B0.

• �~v = ±� ~B/
p
4⇡⇢0 for AWs propagating in the ⌥ ~B0 direction, and �⇢ = 0

• In the solar wind �⇢/⇢0 ⌧ |� ~B/B0|. Also, there are many intervals of time

in which the relation �~v = ±� ~B/
p
4⇡⇢0 is nearly satisfied, with the sign

corresponding to propagation of AWs away from the Sun.

• For these reasons, and because AWs are the least damped of the large-

scale plasma waves, AWs or nonlinear AW-like fluctuations likely comprise

most of the energy in solar wind turbulence
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corrected for aberration due to the spacecraft 
motion). The two lower curves on the plot are 
proton number density and magnetic field 
strength ((B) = 5.3 % (N) = 5.4 cm-3). This 
period is one of the better examples of the waves 
and illustrates their most characteristic features: 
close correlation between b and v, variations in b 
comparable to the field strength, and relatively 
little variation in field strength or density. In 
this case the average magnetic field is inward 
along the spiral and the correlation between 
b and v is positive; when the magnetic field is 
outward the correlation in periods of good waves 
is negative. This indicates outward propagation 
(see equation 1). 

The scale ratio used for plotting the magnetic 
field and velocity variations in Figure i corre- 
sponds to a value of D• -• of 6.4 km 
This was determined by the condition that, 
when this ratio is used for a fixed area plot 
of v• versus b• for all the data, the stun of the 
squares of the perpendicular distances from 
the points to a line of unit slope is minimized. 
(Mathematically this gives D• -• = 
the ratio of the standard deviations.) The 
average values of N and N, during this per- 
iod are 5.4 and 0.4 cm -3, respectively; thus 
equation i with • = i gives D• -• = 8.2 km 
sec-•/-F. We feel that the discrepancy between 
this predicted value and the observed value of 6.4 
is significant and probably is due to the anisot- 

ropy in the pressure. This requires that 4•r 
{•, -- p•_)/Bo • be 0.40. The average during 
this period of (2kTo/m•)•% the most probable 
proton velocity, was observed to be 47 km/sec, 
which corresponds to 4•'p•/B 0 • = 0.5, where p• is 
the mean proton pressure. With reasonable 
values of the electron and a pressures and of the 
pressure anisotropy [Hundhausen et al., 1967], the 
required value of •a seems entirely reasonable. 
On other occasions when /• = 8•rp•/Bo • is 
smaller, values of • closer to unity would be 
expected. 

Waves versus discontinuities. Figure 2 is an 
expanded plot of three particular 10-rain periods 
indicated on Figure 1, where the crosses are the 
basic magnetometer data (one reading in 
approximately 4 sec) and the lines are the plasma 
data (1 per 5.04 rain), scaled in the same ratio as 
in Figure 1. On this time scale, the waves may be 
either gradual (2b) or discontinuous (2a, 2c), with 
abrupt changes within 4 sec. As discussed below, 
we feel that all three examples are Alfv•nic, 
with continuous magnetic field lines, but with a 
discontinuity in direction in cases 2a and 2c. 
Such abrupt changes occur at a rate of about i per 
hour and are enmeshed in more gradual changes. 

The visual appearance of the field fluctuations 
is qualitatively different on the time scales of 
Figures i and 2. With the scale used in Figure 2, 
the most prominent structures are the abrupt 
changes that tend to be preceded and followed by 

  (Belcher & Davis 1971)
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• For these reasons, and because AWs are the least damped of the large-

scale plasma waves, AWs or nonlinear AW-like fluctuations likely comprise

most of the energy in solar wind turbulence

In a moment, we’ll consider a specialized form of MHD that contains 
Alfvén waves and nonlinear interactions between Alfvén waves, but neglects 

slow and fast magnetosonic waves. 

But before jumping in to more details, to motivate us thru what’s coming 
up, a few words about why Alfvén-wave turbulence is so interesting…



Coronal Heating and Solar-Wind Acceleration by Waves 
(Parker 1965, Coleman 1968, Velli et al 1989, Zhou & Matthaeus 1989, Cranmer et al 2007)

• The Sun launches Alfven waves, which transport energy outwards 
• The waves become turbulent, which causes wave energy to ‘cascade’ 

from long wavelengths to short wavelengths 
• Short-wavelength waves dissipate, heating the plasma. This increases 

the thermal pressure, which, along with the wave pressure, accelerates 
the solar wind.
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@t
= r⇥ (~v ⇥ ~B) + ⌘r2 ~B

r · ~v = 0

⇢ = constant

Incompressible MHD

resistivity

kinematic 
viscosity

Because Alfvén waves (AWs) satisfy ∇⋄v = 0, incompressible MHD captures 
much of the physics of both small-amplitude AWs and AW turbulence.

Because the viscous and resistive terms contain ∇2 they dominate for 
fluctuations with sufficiently small lengthscales.



Elsässer Variables, ~a±

~B = B0ẑ + � ~B

vA = B0/
p
4⇡⇢

~b = � ~B/
p

4⇡⇢

⇧ =
1

⇢

✓
p+

B2

8⇡

◆

~a± = ~v ±~b

Substitute the above into the MHD eqns and obtain

@~a±

@t
⌥ vA

@~a±

@z
= �r⇧� ~a⌥ ·r~a± + { terms / to ⌫ or ⌘ }

represent AWs traveling

parallel (a�) or
anti-parallel (a+) to ~B0

(B0 = constant)



Conserved Quantities in Ideal, Incompressible MHD

• These “quadratic invariants” are conserved in the “ideal” limit, 
in which the viscosity and resistivity are set to zero.

energy

magnetic helicity

cross helicity

integral measures the difference in energy between 
AWs moving parallel and anti-parallel to B0.

integral vanishes when there 
is no average flow along B0

E =

Z
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Conserved Quantities and Cascades

• MHD turbulence results from “nonlinear interactions” 
between fluctuations. These interactions are 
described mathematically by the nonlinear terms in 
the MHD equations (e.g., a-⋄∇a+). When you neglect 
viscosity and resistivity, the equations conserve E, 
Hm, and Hc. The nonlinear terms in the equations 
thus can’t create or destroy E, Hm, and Hc, but they 
can “transport” these quantities from large scales to 
small scales (a “forward cascade”) or from small 
scales to large scales (an “inverse cascade”). 

• At sufficiently small scales, dissipation (via viscosity, 
resistivity, or collisionless wave-particle interactions) 
truncates a forward energy cascade, leading to 
turbulent heating of the ambient medium. 



Forward and “Inverse” Cascades in 3D 
Incompressible MHD 

(Frisch et al 1975)

• Energy cascades from large scales to 
small scales. (Large wave packets or 
eddies break up into smaller wave 
packets or eddies.) 

• Magnetic helicity cascades from small 
scales to large scales. (Helical motions 
associated with rotation cause the growth 
of large-scale magnetic fields, i.e., 
dynamos.)



The Inertial Range of Turbulence

• Suppose turbulence is stirred/excited at a large scale or 
“outer scale” L.  

• Suppose that the turbulence dissipates at a much 
smaller scale d, the “dissipation scale.” 

• Lengthscales λ satisfying the inequality d << λ << L are 
said to be in the “inertial range” of scales. 

• Fluctuations with wavelengths in the inertial range are 
insensitive to the details of either the forcing at large 
scales or the dissipation at small scales. 

• Systems with different types of large-scale forcing or 
small-scale dissipation may nevertheless possess 
similar dynamics and statistical properties in the inertial 
range (“universality”).
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Canonical picture: larger eddies break up into 

smaller eddies

“Energy Cascade” in Hydrodynamic Turbulence



Kolmogorov’s Theory of Inertial-Range Scalings in 
Hydrodynamic Turbulence

The shearing/
cascading of eddies 

of size λ is dominated 
by eddies of similar 

size: interactions are 
“local” in scale.

�v� = rms amplitude of velocity di↵erence

across a spatial separation �

⌧c = “cascade time”

⌧c ⇠ �/(�v�) = “eddy turnover time”

✏ ⇠ (�v�)
2/⌧c = “cascade power”

✏ ⇠ (�v�)
3/�

In the “inertial range,” ✏ is independent of �.

�! �v� / �1/3
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Connection to Power Spectra
• Let f = kv

solar�wind

/2⇡, and E(k)dk = P (f)df , where P (f) (or E(k))
is the frequency (or wavenumber) power spectrum of the velocity fluctu-

ations. (This velocity power spectrum is defined just like the magnetic

power spectrum introduced earlier in the talk, but with

~B ! ~v.)

• The total kinetic energy in velocity fluctuations per unit mass is 0.5
R1
0

E(k)dk.

• The mean square velocity fluctuation at lengthscale � ⌘ k�1

1

is given by

(�v�)
2 '

Z
2k1

0.5k1

E(k) dk ⇠ k
1

E(k
1

)

• If �v� / �1/3 / k�1/3
1

, then E(k) / k�5/3
, and

P (f) / f�5/3.

• We saw earlier in this talk that this type of scaling is seen in magnetic-

field measurements. A similar scaling is also seen in velocity fluctuation

measurements, although the exponent appears to be somewhat smaller

than 5/3 (Podesta et al 2007).



Alfvén-Wave Turbulence

• Wave propagation adds an additional complication. 

• Here, I’m going to walk you through some difficult 
physics, and try to convey some important ideas 
through diagrams rather than equations. 

• These ideas are useful and have been influential in 
the field, but represent a highly idealized viewpoint 
that misses some physics and is not universally 
accepted. 

• This is challenging material the first time you see it, 
but these notes will hopefully serve as a useful 
introduction, and one that you can build upon with 
further study if you wish to learn more.



the way that wave packets displace field lines is the key
to understanding nonlinear wave-wave interactions

Nonlinear terms - the basis of turbulence

No nonlinear terms � linear waves. Small nonlinear terms � fluctuations
are still wavelike, but waves interact (“weak turbulence” or “wave turbulence”).
Large nonlinear terms� strong turbulence, fluctuations are no longer wave-like.

��a±

�t
� vA

��a±

�z
= ���� �a� ·��a±

Note that the nonlinear terms vanish unless a+ and a� are both nonzero. Non-
linear interactions result from “collisions between oppositely directed wave pack-
ets” (Iroshnikov 1963, Kraichnan 1965).

��a�

�t
+ (vAẑ + �a+) ·��a� = ���

If �a+ = 0, the �a� waves follow the background field B0ẑ. When �a+ �= 0 and
a+ � vA, the �a� waves approximately follow the field lines corresponding to
B0ẑ and the part of � �B associated with the �a+ waves (Maron & Goldreich 2001).
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+ (vAẑ + �a+) ·��a� = ���

If �a+ = 0, the �a� waves follow the background field B0ẑ. When �a+ �= 0 and
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δB

B0

perturbed magnetic 
field line

if v = -b = -δB/(4πρ)1/2, it is an a-  wave 
packet that moves to the right

phase velocity

Alfven wave packet, 
with δB ⊥ B0

An “incoming” a+ wave packet from the right would follow the 
perturbed field line, moving to the left and down.

An Alfven Wave 
Packet in 1D



B
0

field lines

!
B

If �v = ��b, then a+ = 0 and this is an a� wave packet that propagates to the
right without distortion.

An ”incoming” a+ wave packet approaching from the right would follow the
perturbed field lines, moving left and down in the plane of the cube nearest to
you and moving to the left and up in the plane of the cube farthest from you.

An Alfven Wave 
Packet in 3D
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wave packet

velocity
phase

AFTER COLLISION: wave packets have passed through each 

                                   other and have been sheared



Shearing of a wave packet by field-line wandering

Maron & Goldreich (2001)



In weak turbulence, neither wave 
packet is changed appreciably during 
a single “collision,” so, e.g.,  the right 

and left sides the “incoming” a+ 
wave packet are affected in almost 

exactly the same way by the 
collision. This means that the 

structure of the wave packet along 
the field line is altered only very 

weakly (at 2nd order). You thus get 
small-scale structure transverse to 

the magnetic field, but not along the 
magnetic field. (Large perpendicular 

wave numbers, not large parallel 
wave numbers.) (Shebalin, Matthaeus, & 
Montgomery 1983, Ng & Bhattacharjee 

1997, Goldreich & Sridhar 1997)

Anisotropic energy cascade
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field line

                                      

!+ a   wave packeta   wave packet

of the other 

DURING  COLLISION: each wave packet follows the field lines

wave packet

velocity
phase

AFTER COLLISION: wave packets have passed through each 

                                   other and have been sheared



Anisotropic Cascade

λ⊥

λ||
B • As energy cascades to smaller 

scales, you can think of wave 
packets breaking up into 
smaller wave packets.  

• During this process, the length 
λ|| of a wave packet measured 
parallel to B remains constant, 
but the length λ⊥ measured 
perpendicular to B gets 
smaller. 

• Fluctuations with small λ⊥ end 
up being very anisotropic, with 
λ|| >> λ⊥

(Shebalin, Montgomery, & Matthaeus 1983)
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a- wave packet a+ wave packet

• �v�? = rms velocity di↵erence across a distance �? in the plane perpen-

dicular to

~B = velocity fluctuation of wave packets of ? size �?.

• The contribution of one of these wave packets to the local value of ~v ·r~v
is ⇠ (�v�?)

2/�?. (For AWs, ~v ? ~B0.)

• Assumption: wave packets of size �? are sheared primarily by wave pack-

ets of similar size (interactions are “local” in scale).

• A collision between two counter-propagating wave packets lasts a time

�t ⇠ �k/vA.

• A single collision between wave packets changes the velocity in each wave

packet by an amount ⇠ �t⇥ (�v�?)
2/�?

• The fractional change in the velocity in each wave packet is

� ⇠ �t⇥ (�v�?)
2/�?

�v�?

⇠
�k�v�?

vA�?

(Ng & Bhattacharjee 1997, 
Goldreich & Sridhar 1997)
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• The fractional change in the velocity in each wave packet is

� ⇠ �t⇥ (�v�?)
2/�?

�v�?

⇠
�k�v�?

vA�?

• In weak turbulence, � ⌧ 1, while in strong turbulence � & 1.

• In weak turbulence, the e↵ects of successive collisions add incoherently,

like a random walk. The cumulative fractional change in a wave packet’s

velocity after N collisions is thus ⇠ N1/2�. In order for the wave packet’s

energy to cascade to smaller scales, this cumulative fractional change must

be ⇠ 1.

• This means that it takes N ⇠ ��2
wave packet collisions in order to cause

a wave packet’s energy to cascade.

• The cascade time is therefore ⌧c ⇠ N�k/vA ⇠ ��2�k/vA.
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• The cascade time is therefore ⌧c ⇠ N�k/vA ⇠ ��2�k/vA. Recalling that

� = �k�v�?/(�?vA), we obtain

⌧c ⇠
vA�2

?
�k�v2�?

• The cascade power ✏ is �v2�?
/⌧c, or

✏ ⇠
�v4�?

�k

vA�2
?

• Noting that ✏ is independent of �? within the inertial range, and that �k

is constant, we obtain v�? / �1/2
? .

• Substituting this scaling into the expression for �, we find that � / ��1/2
? .

At su�ciently small scales, � will increase to ⇠ 1, and the turbulence will

become strong!

(Ng & Bhattacharjee 1997)
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corresponds to

E(k?) / k�2
?



a   wave packet

λ
λ

λ
− +a   wave packet D

• after colliding wave packets have inter-penetrated by a distance D satis-
fying the relation

D

vA
⇥ �v�?

�?
⇠ 1

the leading edge of each wave packet will have been substantially sheared/altered
relative to the trailing edge. The parallel length of the wave packet there-
fore satisfies �k . D, or equivalently � . 1.

• In weak turbulence, � ⌧ 1 but � grows to ⇠ 1 as �? decreases. Once
� reaches a value ⇠ 1 (strong turbulence), � remains ⇠ 1, the state of
“critical balance.” (Higdon 1983; Goldreich & Sridhar 1995)



Critically Balanced, Strong AW Turbulence

• In critical balance,

� =

�k

vA
⇥ �v�?

�?
⇠ 1

and the linear time scale �k/vA is comparable to the nonlinear time scale

�?/�v�? at each perpendicular scale �?, and the turbulence is said to be

“strong.”

• the energy cascade obeys the same arguments as hydrodynamic turbu-

lence: ⌧c ⇠ �?/�v�? and ✏ ⇠ �v2�?
/⌧c ⇠ �v3�?

/�?.

• Since the cascade power ✏ is independent of �? in the inertial range,

�v�? / �1/3
? .

• the condition � ⇠ (�k/vA)⇥ (�v�?/�?) ⇠ 1 then implies that �k / �2/3
? .

(Higdon 1983;  Goldreich & Sridhar 1995)
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Outline
I. 3D Structure of the Solar Wind 

II. Introduction to Turbulence 

III. Measurements of Solar-Wind Turbulence 

IV. Magnetohydrodynamic (MHD)  Turbulence 

V. Reflection-Driven MHD Turbulence and 
the Origin of the Solar Wind.



Coronal Heating and Solar-Wind Acceleration by Waves 
(Parker 1965, Coleman 1968, Velli et al 1989, Zhou & Matthaeus 1989, Cranmer et al 2007)

• The Sun launches Alfven waves, which transport energy outwards 
• The waves become turbulent, which causes wave energy to ‘cascade’ 

from long wavelengths to short wavelengths 
• Short-wavelength waves dissipate, heating the plasma. This increases 

the thermal pressure, which, along with the wave pressure, accelerates 
the solar wind.
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Observations of Alfven Waves in the Low Corona 
(DePontieu et al 2007) 

• Thomson-scattered light seen by Hinode’s Solar Optical Telescope. 

• F ~ (ρ<dv2>)vA ~ 105 erg cm-2 s-1 — sufficient to power solar wind. 

• These Alfvén waves may be launched by photospheric motions or 
magnetic reconnection.

104 km
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• The Sun launches Alfven waves, which transport energy outwards 
• The waves become turbulent, which causes wave energy to ‘cascade’ 
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the thermal pressure, which, along with the wave pressure, accelerates 
the solar wind.
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• Alfven wave damping is so weak that turbulence is needed in order to 
speed up the dissipation of the wave energy, so that the waves can 
dissipate and transfer their energy to the plasma. 

• Plasma heating is essential, both to explain the observed temperature 
profile and because plasma pressure is more efficient than wave 
pressure at accelerating the plasma near the Sun:   
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Coronal Heating and Solar-Wind Acceleration by Waves 
(Parker 1965, Coleman 1968, Velli et al 1989, Zhou & Matthaeus 1989, Cranmer et al 2007)



• Magnetic forces: magnetic pressure and magnetic tension 

• Frozen-in Law: magnetic field lines are like threads that are frozen to 
the plasma and advected by the plasma. 

• Alfven waves are like waves on a string, where the magnetic field 
plays the role of the string.



Transverse, Non-Compressive Fluctuations 
(Whang 1980, Zhou & Matthaeus 1989; Velli et al 1989)
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Inward-propagating waves (z-)  and outward-propagating waves (z+) 
are coupled via linear terms, which lead to (non-WKB) wave reflection. 

The nonlinear term leads to energy cascade, but only in the presence 
of both z+ and z-.  I.e., if all the waves propagate in same direction, 

they don’t interact — only counter-propagating waves interact.
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Inward-propagating waves (z-)  and outward-propagating waves (z+) 
are coupled via linear terms, which lead to (non-WKB) wave reflection. 

The nonlinear term leads to energy cascade.

z± = �v ⌥ �B/
p
4⇡⇢

For a stationary (U=0) and homogeneous background.

• z+ represents Alfvén waves (AWs) propagating parallel to B0

• z� represents AWs propagating anti-parallel to B0.
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Inward-propagating waves (z-)  and outward-propagating waves (z+) 
are coupled via linear terms, which lead to (non-WKB) wave reflection. 

The nonlinear term leads to energy cascade.

z± = �v ⌥ �B/
p
4⇡⇢

For a stationary (U=0) and homogeneous background.
The nonlinear term leads to energy cascade, but only in the presence of 
both z+ and z-. If all the waves propagate in same direction, they don’t 
interact. Only counter-propagating waves interact nonlinearly to 

produce turbulence.



Transverse, Non-Compressive Fluctuations 
(Whang 1980, Zhou & Matthaeus 1989; Velli et al 1989)
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Here we have allowed for background flow and inhomogeneity, and we 
have taken U to be parallel to B0. 

Inward-propagating waves (z-)  and outward-propagating waves (z+) 
are coupled via linear terms, which lead to (non-WKB) wave reflection. 

REFLECTION PROVIDES THE INWARD-PROPAGATING WAVES 
NEEDED FOR ALFVÉN-WAVE TURBULENCE!
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There are now a number of models and 
numerical simulations showing that 

reflection-driven Alfvén-wave turbulence is 
a promising mechanism for powering the 

solar wind, particularly the fast wind. 

But how can we tell if these models are 
accurate? The solar-wind acceleration 

region is so far away…
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NASA’s Parker Solar Probe



Parker Solar Probe

• Several passes to within            
10 solar radii of Sun. 

• First in situ measurements 
ever of the solar-wind 
acceleration region. 

• Will measure E, B, u, T, f(v), 
energetic particles. 

• Could also provide important 
insights into other 
astrophysical systems.



Summary
• Turbulence is measured at all locations that spacecraft have 

explored in the solar wind. 

• Alfvén-wave turbulence (i.e., non-compressive MHD turbulence) 
likely accounts for most of the energy in solar-wind turbulence. 

• Phenomenological models (e.g., critical balance) offer insights 
into the dynamics and scalings of MHD turbulence. 

• Alfvén waves may provide the energy required to power the solar 
wind, and Alfvén-wave turbulence may be the mechanism that 
allows the wave energy to dissipate and heat the solar-wind 
plasma.  

• Parker Solar Probe will provide the in situ measurements needed 
to determine the mechanisms that heat and accelerate the solar 
wind within the solar-wind acceleration region.
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