SEPs and other energetic particles

Christina Cohen Caltech

Types of Energetic Particles

 Galactic Cosmic Rays (GCRs)
 Anomalous Cosmic Rays (ACRs)

Radiation belt particles (planets, mostly Earth and Jupiter have been studied) Solar Energetic Particles (SEPs)

What are SEPs?

Solar Energetic Particles

Solar = assumed to originate at the Sun
Energetic = historically above a few hundred keV/nuc
Particles = ions (mostly H, He like the Sun) + electrons

Seen as increases in counting rates of ions (and/or electrons) of energies usually above 0.1 MeV/nucleon

 First detection with connection to solar flare observation – Forbush 1946 in neutron monitor

- Timing related to gamma ray flare 1956 (most well studied)
- Better in space because can see them directly
 - intensity
 - energy spectra
 - composition

• At the same time...

- flares are being categorized by size, duration, emission wavelength
 radio emission is being categorized
- flares and radio emission combined to create...
- Two classes of flares
 - Impulsive
 - Gradual

Correlations with SEP characteristics results in a 2 class SEP system:

	Impulsive	Gradual	
Flare Characteristics	Short duration Compact/Point Source	Long duration Large Source	
Radio Characteristics	Type III/V	Type II/IV	
Particle Characteristics	³ He, e ⁻ , heavy ion rich short duration, small, limited longitude	SW like composition long duration, large, wide longitude	

Gradual

Impulsive

Figure 2.2. Intensity-time profiles of electrons and protons in 'pure' (a) gradual and (b) impulsive SEP events. The gradual event is a disappearing-filament event with a CME but no impulsive flare. The impulsive events come from a series of flares with no CMEs.

'Paradigm Shift' (1980s) Had 1 acceleration mechanism for all SEP events Now have two independent acceleration mechanisms CME-driven shock acceleration <=> Gradual SEP events Impulsive flare acceleration <=> Impulsive SEP events ACE+ shake up -Not mutually exclusive -SEP properties not definitive Old Picture:

Reames 1999

New Picture:

Figure 2.1. A paradigm shift.

Why Care About SEPs?

Space weather concerns Near Earth

Why Care About SEPs?

Space weather concerns
 – Near Earth
 – Far from Earth

Why Care About SEPs?

Space weather concerns

Near Earth
Far from Earth

Science of particle acceleration

Shocks
CMEs, termination shock, supernovae, Earth's bow shock...

6

- Why Care About SEPs?
- Space weather concerns

 Near Earth
 Far from Earth

 Science of particle acceleration

 Shocks
 CMEs, termination shock,
 - supernovae, Earth's bow shock...
 - Reconnection
 - Sun, magnetosphere, Jupiter...

٩

How Do We Study Them?

- See next lecture for instrumentation
- Locations
 - L1 is very common

How Do We Study Them?

See next lecture for instrumentation

Locations

L1 is very common
 STEREO drifts
 wrt Earth

٩

How Do We Study Them?

- See next lecture for instrumentation
- Locations
 - L1 is very common
 STEREO drifts wrt Earth
 Once had Helios

Why is it Hard?

With time

Duration -> fluence

– Peak

Everything varies

Intensity (cm²

Everything varies

With time – Peak – Duration -> fluence – Onset

– Onset

With energy

With time

- Peak
- Duration -> fluence
- Onset
- With energy

 Ground level enhancement (GLE Event)

Everything varies

Spaceship Earth Observations of the Solar Minimum GLE Recorded December 13, 2006 by Neutron Monitors

With time

- Peak
- Duration -> fluence
- Onset
- With energy
 - Ground level enhancement (GLE Event)
- Composition
 - Big events

Everything varies

- With time – Peak – Duration -> fluence – Onset
- With energy – Ground level enhancement (GLE Event)
- Composition
 - Big events
 - ³He-rich events

STEREO Ahead COR2

2020-11-29 14:39:24

- Transport effects
 Lose energy
 - Scattering

Transport effects

 Lose energy
 Scattering
 Interplanetary structures

Transport effects Lose energy Scattering **Interplanetary structures** Evolution of conditions Shock parameters **Background solar wind**

٢

What Happens in the Gap?

Transport effects Lose energy Scattering **Interplanetary structures** Evolution of conditions – Shock parameters **Background solar wind** - Seed population

Transport effects Carrington Latitude [Degree] Lose energy Scattering **Interplanetary structur** Evolution of condition Shock parameters **Background solar wind** - Seed population Lack of Measurements

Knowns & Unknowns

Category	Process	What we know	What we don't
Energization	Shock acceleration		
	Reconnection acceleration	Observations	Missing Observations
Transport	Field aligned	Correlations	Observations not
	Cross field	Verified	Understood
Conditions	Plasma + Structures	Theory/Models	Unverified Theory/Models
	Seed population		

Know

See it in action

Know

See it in action
 Basic concepts

 Diffusive shock acceleration
 Shock drift acceleration

Know

See it in action
Basic concepts

Diffusive shock acceleration
Shock drift acceleration

Role of certain parameters

Strength, orientation
Turbulence

Time intensity Profiles,0°

5 $2/5T_n$ $3/5T_n$ 4 time after CME eruption (hours)

 $4/5T_{p}$

 $T_n/5$

Know

- See it in action
 Basic concepts

 Diffusive shock acceleration
 Shock drift acceleration

 Role of certain parameters

 Strength, orientation
 - Turbulence
- **Properties**
 - Spectral features
 - Composition

Energization: Shock Acceleration

Don't Know

10

Variability – Dependence on scales

Energization: Shock Acceleration

- Variability
 - Dependence on scales
- Conditions near the Sun
 - Shock parameters
 - Turbulence
 - Where particle acceleration starts/ends

٩

Energization: Shock Acceleration

Don't Know

 Variability - Dependence on scales **Conditions near the Sun** Shock parameters Turbulence Where particle acceleration starts/ends **Energy-dependence of** composition

Know

Event characteristics – ³He, Ultra heavy ions

0.300

0.8 0.6 •0

0.400

Q/A (3.2 MK)

1 LHe

0.500

Know

- Event characteristics
 ³He, Ultra heavy ions
- Some basic ideas
- Wave-particle interactions
 Magnetic islands
 - Role of guide field

Know

- Event characteristics
 - ³He, Ultra heavy ions
- Some basic ideas
 - Wave-particle interactions
 - Magnetic islands
 - Role of guide field

– Jets

- Some idea of location
 - Near flares/part of process

Don't Know

'Start' energy

Don't Know

'Start' energy
Variability

Spectral features
Size of event
Composition

Don't Know

'Start' energy
Variability

Spectral features
Size of event
Composition

Don't Know

'Start' energy
Variability
Spectral features
Size of event
Composition
Where exactly
Above, below

Don't Know

 'Start' energy Variability - Spectral features – Size of event Composition • Where exactly - Above, below **Escape from region**

Know

Basic ideas – Field line connection – Adiabatic cooling

Transport: Field Aligned

Know

Basic ideas

 Field line connection
 Adiabatic cooling

 Scattering effects

 Particle PAD

Transport: Field Aligned

Transport: Field Aligned

Don't Know

Where the field is/going

Observer-source connection

Transport: Field Aligned

Don't Know

Where the field is/going

Observer-source connection

Variability of the field

Know

It happens

See events far from source

Know

It happens

- See events far from source
- Some ideas
 - Fieldline meandering
 - Scattering

- Puzzling events
 - Circumsolar
 - Wide ³He-rich
 - Distant sources

- Puzzling events
 - Circumsolar
 - Wide ³He-rich
 - Distant sources

1.5 0.5 Y (AU) -0.5 -1 -1.5 -1.5 0 X (AU) -0.5 0.5 1.5 _1

Transport: Cross-field

- Puzzling events – Circumsolar
 - Wide ³He-rich
 - Distant sources
- Fields or particles?

Don't Know

Puzzling events

Circumsolar
Wide ³He-rich
Distant sources

Fields or particles?
Relative roles acceleration vs transport

- Know
- They affect SEPs
 - Acceleration
 - Transport

Know

- They affect SEPs
 - Acceleration
 - Transport
- Solar conditions
 - B field at the photosphere
 - Coronal holes
 - CMEs – Near Sun – IPM

Know

- They affect SEPs
 - Acceleration
 - Transport
- Solar conditions
 - B field at the photosphere
 - Coronal holes
 - CMEs
 - Near Sun
 - IPM
- Details at some points in IPM
 Streaming limit

Don't Know

• B field where we aren't measuring - Strength, orientation CMEs in the way • Shock properties where we aren't measuring – Near Sun CIRs

Don't Know

• B field where we aren't measuring - Strength, orientation - CMEs in the way Shock properties where we aren't measuring – Near Sun CIRs Variability on mesoscales

Know

Suprathermals play a role

٩

Conditions: Seed Populations

Know

Suprathermals play a role
 Some of their sources

 Lower energy portion of events
 Flare material

Don't Know
Variability

Composition
Spectrum

- Variability
 - Composition
 - Spectrum
- Source
 - Constant/episodic?

Don't Know

Variability

Composition
Spectrum

Source

Constant/episodic?

Distribution

The Newest Help

Parker Solar Probe

Parker Solar Probe Breaks Record, Becomes Closest Spacecraft to Sun

Posted on 10/29/2018 13:06:31

The Newest Help

Parker Solar Probe Solar Orbiter

North Pacific Ocean

San Diego

VAI'I

u

(30) TEM OBSERVATO Los Ange

North Pacific Ocean

u

VAI'I

٢

Still Stuff We Don't Understand

PSP at 0.35 AU sees series of events

 – Same source, different composition

<mark>>10</mark> MeV H

Stuff We're Just Starting to Look At

AR13088 was at W180S10
PSP W118 & 15 R_S
Sol0 W149 & 0.7 AU

Sol0/EUI had nice view of AR

(wav): 2022-09-05 00:00

 C^{2}

Stuff We're Just Starting to Look At

AR13088 was at W180S10
PSP W118 & 15 R_S
Solo W149 & 0.7 AU

Solo/EUI had nice view of AP

LASCO & WISPR saw CME

0

2400-2900 km/s at 15 R_s

WISPR

-10

022-09-05 13:36 UT

Stuff We're Just Starting to Look At

- AR13088 was at W180S10
 PSP W118 & 15 R_s
 Solo W149 & 0.7 AU
 Solo/EUI had nice view of AR
 IASCO & WISPR saw CME
- SolO sees Fe-rich event
 PSP sees Fe-poor event

sr MeV/huc)

V(s cm^z

