Anthea J.

4
q

Coster
Haystack.

bse

£ B A 5t e B £

£
»"(' ¥ :'A).
W A




References

H Kelley, M. C. 1989; 2009. The Earth's ionosphere: Plasma physics and electrodynamics.
International Geophysics Series, vol 43. San Diego: Academic Press. (Hardcover - 2009/05/19)

B Rishbeth, Henry, Garriott, Owen K., Introduction to lonsopheric Physics, New York, NY, Academic
Press, 1969. International geophysics series, v. 14

W Jursa, Adolph S., Handbook of Geophysics and the Space Environment, 4t edition, 1985, Air
Force Geophysics Laboratory, Hanscom AFB, MA

B Brekke, A. Physics of the Upper Atmosphere, John Wiley & Son, 1997

B Hunsucker, R.D. and J. K. Hargreaves, The High-Latitude lonosphere and its Effects on Radio
Propagation, Cambridge University Press, 2003.




C

‘'onvection zone

MIT
HAYSTACK
OBSERVATORY

Sun — Earth System Overview

Sun

TR Bt P e Bright active region

Solar wind
particles and
magnetic fields
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Figure 1. The Sun-Earth system. Energy in various forms is constantly flowing from the Sun to Earth. Dynamo action in the
convection zone drives variations in this energy flow by producing sunspots and bright active regions. Photons from the
Sun’s surface and atmosphere reach Earth’s surface and atmosphere, but particles and fields that fogether form the solar
wind are intercepted by the magnetosphere (blue). Eruptive events such as coronal mass ejections, shown emerging from
the Sun’s atmosphere into the solar wind, perturb the magnetosphere and allow energetic particles fo penetrate Earth’s
atmosphere in the polar regions, where the magnetic field lines are anchored. (Figure not to scale.)



Earth’ s Upper Atmosphere (and most of the Solar System):
Is a Natural Plasma

* Plasma is the fourth state of matter
* The universe is filled with plasma

» Extreme ultraviolet output from the

Sun creates a plasma in Earth’ s
upper atmosphere through ionization
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» University of Michigan
® Manchester et. al.
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1. lonosphere — What is it? Where is it? Why
do we care? (Provide answers in chat!)
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Structure of the Ionosphere

IRI-95 Electron Density
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The Discovery of the Ionosphere

1902 AD - Oliver Heaviside
Predicts layer of ionized gas between 90 and 150 km

1924 AD — Edward Appleton
Measurement of ionospheric reflecting layer height
BBC Bournemouth Transmitter to Cambridge
Frequency change method

1925 AD — Gregory Breit and Merle Antony Tuve
Height of the Ionosphere with Seasonal and Diurnal variations
Pulse sounding technique

1926 AD - Robert Watson-Watt introduces the name “Ionosphere

SaE ., tNorning]

— ey
2 | Afternoon |
Fig. 8. (A) Wave form of NKF; A =41.7 meters; modulation frequency =2500; shows
original wave form, September 29, 1925, 10:30 A.M
(B) Wave form of NKF;A=41.7
form badly broken and visual observations showed rapid and irregular changes, Sep-
tember 29, 1925, 3:30 r.u.

s; modulation frequency 22500; wave

sicegne Uy eme 1opuoubiIg swyer

Date  75th meri- Resulting

dian time height, & Remarks
1925 hom miles
July 28 10:35 A 55
3:45 p.m. 55 For strong reflection.

141 For weaker reflection.
Sep. 21 10:30 A.M. 118

11:30 A.M. 11 Identification of ground and reflected
(807) waves not quite certain.
1:30 p.m. 125
3:30 P 91 For weaker reflection.

125 For stronger reflection.
125 ‘When reflection became single.

Sep. 23 10:30 A.M. 106
1:30 e, 116
3:30 p.M. 132
Sep. 25 10:30 a.m. 79
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Radio Waves and Propagation

Maxwell's Equations
Electromagnetic Wave R S

|\|

Electric Field

Oscillating
Charge

Waves are described by :

Wavelength, Amplitude, Polarization
Phase and Direction of Propagation

Propagate at the speed of light (in the medium)
Can be superimposed linearly (mostly true)
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Radio Propagation in the Ionospherere

Plasma Frequency

Index of Refraction (no B field) Phase Velocity
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Magnetic Field Effects on Propagation

k LB
Charged - (@) file 119981221 234108 event #727
arged particles
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Index of Refraction »n=—. in the lonosphere

1 “p

> _ X(1-X)
n - 1 - 1
1 1 R
A-X) -5 | ¥ +A- XY
2 4
where
n is the index of refraction |
w; @ 2\
_ Oy _ % Ne e B
_a) _a) N g()me H me
@ = the angular frequency of the radar wave,
Y, = Ycosf, Y, = Ysind,
¢ = angle between the wave vector k and B,
k = wave vector of propagating radiation,
B = geomagnetic field, N = electron density
e = electronic charge, m_, = electron mass,

and ¢ = permittivity constant.
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Illustration of Atmospheric Effects

Elevation Refraction Range Delay
IONOSPHERE OBSERVED
Ség? IONOSPHERE RANGE
(3?% TRUE 3 /\
TROPOSPHERE & L QpNG
_ T _TROPOSPHERE _o\E )~
NGRS ' TOTAL
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. ERRORIN
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o lonosphere
In the solar wind plasma, and in many parts of the magnetosphere

the ionization degree is 100%.
What is the maximum ionization degree in the ionosphere?

o lonosphere
At maximum 1%o of the neutral atmosphere is ionized
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2. What is the ionosphere made of?
What are Scale Heights?

Why are there Different regions (D/E/F - importance of different
processes in different regions).?

How does it form? What are the primary mechanisms of
Production and Loss ?
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Distinct Regions in the lonosphere Form because:

The Solar spectrum deposits its energy at various heights depending on
the absorption characteristics of the atmosphere.

The physics of recombination depends on the atmospheric density which
changes with height.

The composition of the atmosphere changes with height
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Photoionization
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Scale Height

A scale height is a term often used in scientific contexts for a distance
over which a quantity decreases by a factor of e. It is usually
denoted by the capital letter H.

For planetary atmospheres, it is the vertical distance upwards, over
which the pressure of the atmosphere decreases by a factor of e.
The scale height remains constant for a particular temperature. It
can be calculated by

H=KkKkT/Mg where:

k = gas constant = 8.314 J-(mol K)—1

T = mean molecular temperature in kelvins

M = mean molecular mass of dry air (units kg-mol—1)

g = acceleration due to gravity on planetary surface (m/s?)

18



http://www.answers.com/topic/e-mathematical-constant
http://www.answers.com/topic/pressure
http://www.answers.com/topic/molar-gas-constant
http://www.answers.com/topic/temperature
http://www.answers.com/topic/river-kelvin
http://www.answers.com/topic/molecular-mass
http://www.answers.com/topic/acceleration

The Neutral Atmosphere (according to NRLMSISE-00)

Neutral Temperature Neutral Density
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Composition

1000— , -
—_ n(.0+)
900 — n(H+) ||
— n(02 .
— HNos At heights over 100 km, molecular

800 diffusion means that each molecular

atomic species has its own scale height.
700

Dominant Constituent

-l
" 0-200 Km Nitrogen
200-1000 Km Oxygen
400 1000-2500 Km Helium
2500 - 8-14 Earth Radii Hydrogen
300k
200F -=--=-- i Jeny— AR R M S SR Se - _E—__Ed
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http://www.answers.com/topic/diffusion

Hydrostatic Equilibrium

m [he force of gravity on a parcel of air is balanced
by the pressure gradient

m Assume T, is independent of height and integrate

we obtain
n, =n, expl—-(h—-5~,)/ H,]

m [he density of an atmosphere falls off (generally)
exponentially.
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lonospheric Density Profile

m Photochemical equilibrium assumes transport is not important so local loss matches
on

local production.

c=0-L=0
ot O

m If loss is due to electron-ion collisions, we get a Chapman layer
O=L=on’
n, = (Q/a)
a(n ueh)
or "2 ok

m If there is vertical transpo

= Treating the pressure forces of electrons and ions and assuming neutrals are
stationary, we obtain

= Where ppRe %SV XIllis the ambipolar diffusion coefficient and Hp the plasma

scale heigrnt
k(T, +T,)/ m,g

m Vertical transport velocity becomes




The Earth’ s Ionosphere

* For historical reasons, the ionospheric layers
are called D, E, F
D layer, produced by x-ray photons, cosmic rays
 E layer, near 110 km, produced by UV and solar
X-rays
* F1 layer, near 170 km, produced by EUV
* F2 layer, transport important




lon composition

N : N e O™ dominates around

— e -
oo . F region peak and H™

o . starts to increase
: ”r rapidly above 300 km.
o dominant ions in E

i ! : and upper D regions

sool ,' (lon chemistry: e.g.
Y, Ny + O — NOT™ + N).

250F / e ~NO* N _

: e - @ D-region (not shown)

; .

200r B contains positive and

- + + - . . A
ol — N2 " B negative ions (e.g. O))

: g and ion clusters (e.g.

i j H+(H20)n,
oo o, o . (NO)*(H20),).
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Figure: Daytime solar minimum ion
profiles.



lonospheric regions

ALTITUDE (km)
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Figure: Typical ionospheric electron
density profiles.

lonospheric regions and typical
daytime electron densities:

@ D region: 60—90 km,
ne = 108-101° m—3

@ E region: 90—-150 km,
ne = 1019-10 m—3

@ F region: 150-1000 km,
ne = 1011-1012 m—3 .

lonosphere has great variability:

@ Solar cycle variations (in
specific upper F region)

@ Day-night variation in lower F,
E and D regions

@ Space weather effects based
on short-term solar variability
(lower F, E and D regions)
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Why do we care about
conductivities?

lonosphere is a plasma with an embedded magnetic field.

V-l (E(r.t) + Uir.t) x B| =0

“The resulting electric field is as rich and complex as the driving wind
field and the conductivity pattern that produce it”, Kelley, Ch. 3
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Equations of Motion

Parallel equation of motion

Perpendicular equation of motion

q(EJ_+ui . B) = m;v;,,a ,;

o e(EJ_—I_ue A B) — mevenuJ_e
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Collision Frequencies

lon and electrons collide with neutrals as they gyrate. How they move in
response to electric fields depends very much on the collision frequency

relative to the gyro-frequency.

Earth
(Daytime)
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Conductivity

m Pedersen conductivity (along
E.) perpendicular B, parallel E;
horizontal

= Hall conductivity (along E x B)
= Parallel conductivity

m Conductivity tensor
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IR Cooling

10-120 nm

Far UV 120-200 nm
Middle UV 200-300 nm
Near UV 300-400 nm

Visible and IR
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lonosphere at high, middle and low latitudes

e ——

— ——
——— —

Auroral Zone

Figure: IMF coupling to the
magnetosphere.

@ High-latitude ionosphere

(polar cap, cusp, auroral
oval): intense electric fields
mapping from the
magnetosphere, particle
precipitation, effects of
magnetospheric substorms.

Mid-latitude ionosphere:
occasionaly high-latitude
electric fields may penetrate
to mid-latitudes, effects of
magnetic storms.

Low-latitude ionosphere:
small electric fields, high
day-time conductivities due
to solar radiation
(equatorial electrojet).
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Geodetic Latitude, Deg

Day302 'E\' PM ¢ > MIT Haystack Observatory
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Enhanced TEC Region observed in the Mid-Latitudes

May 30, 2003 01:00 UT TEC [10,100],TECu
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Aurora observed over Venetie, Alaska
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But how to explain these next two

photographs? Answer in chat

HAYSTACK
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West Texas 15 Sept 2000
near El Paso Texas
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The last few slides are to provide
excitement about the ionosphere 1!
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Solar Flare

A violent explosion in
the Sun's atmosphere;
energy equivalent of a
hundred million
hydrogen bombs.
Giant bursts of X-rays
and energy which
travel at the speed of
light

e Arrival: 8 min from Sun to
Earth (149.6 million km)

e Duration: minutes to 3 hrs
» Daylight-side impact
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Sept 6, 2017

UTC 2017-09-06 11:30:00
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GPS TEC for Sept 6, 2017 Solar Flare X9.3 Max=12:02

TECu

Median Solar Zenith Angle = 18.38
Difference in TEC = 2.58

- Start lat 20.00 Stop iat 22.00

Start lon -80.00 Stop lon -70.00

11

11.2 114 11.6 11.8 12 122 12.4 12.6 128 13
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GPS TEC for Sept 6, 2017 Solar Flare X9.3 Max=12:02

- v’\
“\
Median Solar Zenith Angle = 71.32 * - =

Difference in TEC = 2.25 T ——

Start lat 50.00 Stop lat 52.00
Start lon 0.00 Stop lon 10.00
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Cormell University

IGS Network, 6 December 2006

19:14:46 UTC
® Failure Operational

Owens Valley Solar Array RHCP SRB Power (1

6 GH=)

0__,/\~_,....-\

Solar Flux Units
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2022 Tonga volcanic eruption induced TID global
propagation

This looping video shows a series of GOES-17
satellite images that caught an umbrella cloud
generated by the underwater eruption of the

Hunga Tonga-Hunga Ha’apai volcano on Jan.
15, 2022.

Crescent-shaped bow shock waves and
numerous lighting strikes are also visible.

Credit: NASA Earth Observatory image by Joshua Stevens using GOES imagery courtesy of NOAA and NESDIS
words from https://www.jpl.nasa.gov/news/tonga-eruption-sent-ripples-through-earths-ionosphere)
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https://www.jpl.nasa.gov/news/tonga-eruption-sent-ripples-through-earths-ionosphere

New Zealand (Animation)

o UTC 2022-01-15 04:00:00 dTEC (TECu)
Initial waves had huge 0.20
amplitudes and
20°s =
wavelengths (~ 2K km!) - 0.15
" = 0.10
Subsequent waves had AR -
300-500 km wavelengths E -
30°s ;
L 0.00
35°S :
i L —0.05
49> —0.10
4505 ::: —0.15
2 —0.20
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180°
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Summary

lonospheric science continues to provide us with a wealth of new and exciting
observations (e.g. the Steve phenomena)

It is @ major contributor to space weather effects on radio wave
propagation and on PNT systems (positioning, navigation, and timing).

“The resulting electric field is as rich and complex as the driving wind
field and the conductivity pattern that produce it”, Kelley, Ch. 3
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