Observational Heliophysics II: Across the Electromagnetic Spectrum

Craig DeForest (Southwest Research Institute)

Heliophysics Summer School, 8/14/2025

"Why look at the Sun anyway? Isn't it just a big ball of gas?"

Betelgeuse: the first distant star we could resolve (sort of)

Atmosphere of Betelgeuse PRC96-04 · ST Sci OPO · January 15, 1995 · A. Dupree (CfA), NASA

HST · FOC

Sol: the star we can resolve best! Image: TRACE, EUV 19.5 nm, 1999

Outline

- Refresher: the electromagnetic spectrum
- What can you measure with photons, anyway?
- A brief tour of the Sun and how we measure it
 - Interior and surface (visible)
 - Chromosphere (visible & UV)
 - Lower Corona (EUV, X-rays)
 - Middle Corona (EUV, FUV, visible light)
 - Outer Corona (visible light, radio)
 - Solar Wind (visible light)
- An example of signal separation
- Summing up

The electromagnetic spectrum

Observing across the electromagnetic spectrum

• Only a small part of the spectrum is visible from Earth's surface!

Observing across the electromagnetic spectrum

- Non-thermal processes in solar flares!
- Impulsive heating; active regions •
- Coronal structure & dynamics;
 diagnosis (temp., density, etc.);
- Transition region, "solar atmosphere"
- Photosphere, chromosphere, corona
- Chromosphere, prominences, corona
- Entire system (see Bastian's talk!)

The solar visible spectrum is *complicated!*

- Lots of colors are "missing" from sunlight
- Darkest:"Fraunhofer lines"

The solar visible spectrum is *complicated!*

Lots of colors are "missing" from sunlight

Darkest:"Fraunhofer lines"

The solar visible spectrum is *complicated!*

- Lots of colors are "missing" from sunlight
- Darkest:"Fraunhofer lines"

Structure of solar absorption lines

 Ca "K" 3934 Å (deep violet / near UV): a strong (therefore broad) absorption line (Fraunhofer line)

Fe 6173 Å (deep red):
 a weak, relatively clean absorption line
 (SDO/HMI Doppler/magnetograph line)

A brief tour of the Sun and how we measure it

The Sun in visible light

- Photosphere: first "optically thick" layer
 - Blackbody radiation
- Booooring
- Wait? What are those dark things?

Broadband visible: surface convection

- Photosphere: first "optically thick" layer
 - Blackbody radiation
 - Absorbing layers above(!)
- High resolution shows convection & turbulence
- Granular contrast help discriminate stellar models(!)
- Different bands emphasize different aspects

Visible light: specific bands reveal many different details!

- "g-band": bluish forest of lines
 - Reveals magnetic activity
 - Highlights interior wave modes
- Ca H & K (near-UV doublet): shows chromospheric structure and heating (and "atmospheric" wave modes)

Close-up of sunspot in g-band highlights magnetic weirdness

(It's blue light, really!)
Visible light (narrow band): SVT

Doppler measurements reveal motion

- "Dopplergrams" of the Sun: rotation and more
- Technology: tunable narrow-band filters

Solar Doppler (surface motion) from SOHO/MDI

Doppler measurements reveal motion

- (Solar rotation removed)
- Edges of disk: convection (supergranulation)
- Center of disk: solar P-modes (~3 milliHz)
- Technology: tunable narrow-band filters

Solar Doppler (surface motion) from SOHO/MDI

Doppler measurements of sound waves (P-modes) reveal the solar interior

- Temperature structure in the interior
- Differential rotation near the surface
- Global circulation patterns
- Technology:
- 1-min cadence observations for weeks to months
- Sophisticated ground processing

Dopplergraph + polarimeter = magnetograph

- Magnetographs measure the Zeeman splitting
- Easiest method: subtract two Dopplergrams (one in RCP and one in LCP light)
- Sunspots, plage, etc. etc.!

Dopplergraph + polarimeter = magnetograph

- Magnetographs measure the Zeeman splitting
- Easiest method: subtract two Dopplergrams (one in RCP and one in LCP light)
- Sunspots, plage, etc. etc.!
- Resampling to fixed perspective reveals differential rotation

Chromospheric structure

- $H\alpha$ line emission off-limb
- "Cool" (not-multiple-ionized) material suspended in the corona
- note: Spicules, filament, prominence
- Technology: conventional telescopes, with narrowband filters

Chromosphere & Transition Region

- Broadband FUV images
- FUV spectra: Doppler, line width, multicomponent analysis

Lower Corona

Optically thin

Collisionally excited light

SOHO/MDI Magnetogram

- Technology: multilayer mirrors that reflect EUV; conventional telescope designs in space
- Solar Maximum: many active regions and coronal holes; disordered structure

Lower Corona

17-AUG-96 16:00:00

Optically thin

Collisionally excited light

- brightness proportional to n^2

N -250.00 -150.00 -50.00 50.00 150.00 250.00

W Gauss

SOI / MDI Stanford Lockheed Institute for Space Research

• Technology: multilayer mirrors that reflect EUV; conventional telescope designs in space

• Solar minimum: few active regions; polar coronal holes; ordered corona

High resolution lower corona

• See: heating events, wave motion, flows, turbulence, magnetic connectivity & form

• Active region near the limb: dynamics at high resolution!

Lower corona in multispectral color

- Cheat: use your built-in color system to extract spectral information
- See directly the "ionization temperature" of most material

• 304A, 193A, 171A -> R,G,B

Middle corona

- (brightness proportional to n^2) • Technology: multilayer mirrors that reflect EUV; Outer part of FOV: resonantly scattered serious post-processing - (brightness proportional to *n*) GOES-18/SUVI 2022-Aug-11 15:14:50

Collisionally excited low down

EUV (narrowband imaging): GOES/SUVI special campaign; D.B. Seaton post-processing

Middle Corona in visible light

- "K" corona kontinuierlich
- Electrons scatter sunlight (!!)
- Brightness proportional to *n*.

Outer corona in visible light

- Filtered to remove radial gradients
- Very structured, but mostly radial

Visible light (broadband) - with postprocessing

Transition to solar wind

• β =1 transition is visible: onset of turbulence - (around 40-80 Rs)

What do CMEs look like as they leave the Sun?

Merging fields of view: a CME, Sun to Earth

Merging fields of view: a CME, Sun to Earth

Merging fields of science: in-situ analysis meets image analysis

Merging fields of science: PSP images the corona from within!

Images taken from *inside* the corona!

A Halo CME

- A CME coming straight at Earth!
- "Halo": visible 360° around the Sun

A halo in celestial context

- PUNCH mosaic images
- Preliminary data
- CME travels Sun-to-Earth in 1 day!
- More to come (data reduction in process)

Visible light (broadband) - with extensive post-pro

PUNCH Observatories at VSFB

PUNCH MERGES IMAGES TO CREATE A SINGLE LARGE FOV

B, pB polarized image pairs

Initial data product: full FOV trefoil mosaic

-3' resolution, 4 min cadence (4k x 4k x 2)

Coverage and cadence

- -From 6 to 80 R_{\odot} : 4-minute cadence
- -From 80 to 180 R_☉: 30-minute cadence

First WFI image – direct from camera – 14-April-2025

- Focus is ideal
- Stray light is essentially nonexistent
- 9th magnitude objects visible in raw data (Iris)
- This image: WFI-2

• Some expected coma visible at upper left; will be removed as part of L1 processing

POLARIZATION IS WORKING

First WFI-2 polarized image sequence: 16-April-2025

- Uses tri-polarizer method
- Hue encodes polarization
- Matches published strength & direction of F polarization (Leinert et al. 1999)

NFI initial data processing matches or exceeds LASCO C-3 sensitivity; work in progress

An example of visible image processing

Signal separation

STEP 1:

REMOVE FIXED PATTERN IN SOLAR COORDS

► Main background: starfield or galaxy at 1-50 DN/sec

STEP 2:

CO-ALIGN STARFIELD

► Main background: starfield or galaxy at 1-50 DN/sec

HI-2A celestial 2008-12-10 02:58

STEP 3:

REMOVE FIXED PATTERN IN CELESTIAL COORDS

► Main background: residual zodiacal light and 2nd order starfield artifacts at 0.1 DN/sec

STEP 4:

REMOVE RESIDUAL F CORONA & STELLAR 2ND ORDER ARTIFACTS

(CUBIC TEMPORAL FIT FOR EACH PIXEL)

 Main background: nonlinearphotometry starfield artifacts at 0.02 DN/sec

STEP 5:

REMOVE STATIC FEATURES: FOURIER MOTION FILTERING

► Main background: stellar residuals and Fourier ringing at 0.002DN/sec

STEP 6:

RESAMPLE TO SOLAR COORDINATES

Main background: stellar residuals and Fourier ringing at 0.002DN/sec

STEP 7:

AVERAGE ACROSS BATCHES

► Main background: stellar residuals at roughly 0.001DN/sec (10⁻¹⁷ B₀) in faint starfield regions

That "Old timey movie" look:

- 0.1% variations in exposure time
- Timing jitter in onboard computer

"Telegraph stars":

 errors in the camera (0.2% nonlinearity)

Summing up

So what?

Image and spectral analysis

Heliophysics depends on