Heliophysics
Summer School

Foundations of Heliophysics II: Particle Orbits, Transport, Heating, and
Acceleration

Motivation: Why heliophysics? A physics point of view.

My view of plasma physics: kinetic, multi-fluid, and MHD approaches.

Quick review of particle motion and adiabatic invariants.

Shocks (basics) and why they are important (collisionless plasmas)

Magnetic reconnection (basics) and why it is important (collisionless plasmas)

Prof. Robert Ergun

Email: ree@lasp.colorado.edu
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Why Heliophysics?

HSS, 2025. Page 2



The Physics Part of Heliophysics
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Early Mystery: Aurora and Particle Acceleration
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Later Discovery: Three Particle Acceleration Processes
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Early Mystery: Cosmic Ray

The discovery of cosmic rays by
balloons and cloud chambers was
the beginning of particle physics.
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Later Discoveries: Cosmic Ray Acceleration

Cosmic rays are believed to be
generated by collisionless shocks at
supernova shells.

This work was based on
heliophysics observations: the
Earth’s bow shock.
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Early Mystery: Solar and Stellar Winds
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Heliophysics Discoveries: Solar and Stellar Winds
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On-Going Heliophysics Work: Solar and Stellar Winds
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Early Mystery: Solar Flares
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Heliophysics Discovery: Magnetic Reconnection
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On-Going Heliophysics Work: Magnetic Reconnection
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Early Mystery: Collisionless Shocks
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Same Phenomenon Viewed from the Inside
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Early Mystery: Radio Emissions
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Heliophysics Discovery: The Electron Cyclotron Maser

FAST ORBIT 1907

Black: Total.
Red: >100 eV
electrons.

58:55 59:00 59 05
Time (UT) Minutes from 1997-02-13/18:58:55

Radio emissions:

Log (V/m)*/Hz

o

Log (V/m)°MHz

-
S

FAST Results
The FAST observations within the source
region have up to 1000 times better reso-
lution than previous missions
The energy source of auroral kilometric
radiation 1s the electron-cyclotron maser
powered by parallel electric fields, previ-
ously believed to come from a “loss-cone”
nstability.

Signature of the Electron-Cyclotron Maser
Extremely high brightness temperature.
Nearly 100% circularly polarized.
Narrow frequency band.

Strong variability.

Electron-Cyclotron Maser Candidates in
the Astrophysical Literature:

Planetary radiation from all of the magne-
tized outer planets.
Solar microwave spikes.
Solar Type IV/V radio emissions.
Radio emissions from RS CVn binaries.
Radio emissions from AM Her binaries.
Radio emissions from Dwarf M flare
stars.

Implication of the FAST Results
These findings may call for re-analysis of
some astrophysical radio sources.

The FAST results suggest that parallel
electric fields may be widespread 1n astro
physical plasmas, strongly supporting the
1dea proposed over 50 years by Nobel lau
reate, Hans Alfven of Sweden.
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On-Going Heliophysics Work: Turbulence
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On-Going Heliophysics Work: Turbulence
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Heliophysics
Summer School

* Motivation: Why heliophysics? A physics point of view.

* My view of plasma physics: kinetic, multi-fluid, and MHD approaches.

* Quick review of particle motion and adiabatic invariants.

* Shocks (basics) and why they are important (collisionless plasmas)

* Magnetic reconnection (basics) and why it 1s important (collisionless plasmas)

Prof. Robert Ergun

Email: ree@lasp.colorado.edu
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My View of a Plasma
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Basic Approaches to Plasma Physics

Kinetic Multi-Fluid
(1) For each particle, calculate its (1) For each species (s, typically ions
motion given B and E using the and electrons), calculate the density
Lorentz equation. 5 | (ny), velocity (u,), and temperature
(T;) using fluid equations for a given
(2) At every particle location, B and E.
calculate B and E from Maxwell’s
equations. (2) Calculate B and E from
Maxwell’s equations.
Most accurate method, but very
unwieldy; basis of PIC simulations. l
MHD
Least Treat the plasma as a single fluid.

detailed but Calculate the density (n), velocity
highly useful. | (#), and pressure (P) along with
B and E using the MHD equations.
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Kinetic Calculations

Kinetic

(1) For each particle, calculate its
motion given B and E using the
Lorentz equation.

(2) At every particle location,
calculate B and E from Maxwell’s
equations.

dv
m—=q(E+vXB)
dt
V.E=p_‘1'
€o
7 x E dB
*E =T
v B_lﬂE
X czﬂthu‘”r
V-B=0
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Distribution Functions

The distribution function as a
function of v, 1s the number of
particles per unit velocity.

In free-space the units are
number of particles per unit
velocity per m? (s/m#). In three
dimensions, the units of fare
s3/m®,

f\ 250

Number of Particles per Unit Velocity (s/m)

The most common type of
distribution is a Maxwellian or

Gaussian: 1 5
f — foe—imv /kBT

200 —

150

100+

a0




Reducing Distribution Functions

For three dimensions of
velocity space, the units of f n(x,t) = f f f fxv,t) dvxdvydvz
are s3/mb, —00 —00 —00

nu = f vf(x,v,t)dv

o0
_J_ vf (v t)dy
u =
0.159 n

0.080

3
(E)Particle = E kBT

0.000

-3.0 3.0

0.0

— 1 1 2 2 2
3.0 -3.0 (E)particie = n Em(vx +vy, +v;)f dv



Multi-Fluid Approach

Multi-Fluid p
V-E=—-
(1) For each species (s, typically ions €0
and electrons), calculate the density VxE=— E_H
(n,), velocity (u,), and temperature at
(T;) using fluid equations for a given - 1 9E
B and E. XB = o2 3t
(2) Calculate B and E from V-B=20
Maxwell’s equations.
on +V =0
o nu =
ou
mmn E+mn(u-?)u= —VP +nq(E+ uXxB)+nmg
VP=yTVn

(Collisionless)
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Ideal MHD

A L .
+V-(pu) =0 Continuity Equation:

Equation of state.

Force Equation (Collisionless)

du
p—=—+pu-V)Yu=-VP+J]xB+ pg

E, +uxB=20

VXB =y

Frozen-In Condition

Ampere’s Law

Faraday’s Law Assumed:

Define:
p=mn; +mgn,

m;n;u; + myn.u,

u

mn; + mgyn,

P=PF+F,

I = En(ui - ue}

ny = ne

(1) “Principle of Quasi Neutrality”
(2) “Frozen-In”
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Basic Approaches to Plasma Physics

Kinetic

(1) For each particle, calculate its
motion given B and E using the
Lorentz equation.

(2) At every particle location,
calculate B and E from Maxwell’s
equations.

To solve problems, one often must
start with MHD to obtain a large-
scale solution, then use either
multi-fluid or kinetic approach to

understand the small-scale physics.

Multi-Fluid

(1) For each species (s, typically ions
and electrons), calculate the density
(n,), velocity (u,), and temperature
(T;) using fluid equations for a given
B and E.

(2) Calculate B and E from
Maxwell’s equations.

l

MHD

Treat the plasma as a single fluid.
Calculate the density (n), velocity
(u), and pressure (P) along with

B and E using the MHD equations.
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Collisional Versus Collisionless Plasmas

Collisional

(1) The interior of the Sun and
planetary ionospheres examples of
collisional plasmas; they have high
densities

(2) Momentum and energy exchange
between ions and electrons (and/or
neutral particles) can be dominated
by collisions.

(3) The force equation must include
viscosity and collision terms related
to momentum exchange.

(4) Collisions often lead to a
Gaussian distribution as per the
central limit theorem.

Collisionless

(1) The solar corona, solar wind,
Earth’s magnetosphere, and many
astrophysical plasmas can be treated
as “collisionless”.

(2) Momentum and energy exchange

between 1ons and electrons is
dominated by B and E.

(3) Due to low damping, collisionless
plasmas are often turbulent.

(4) Collisionless plasmas often do not
have Gaussian distributions and may
have energetic tails.




Heliophysics
Summer School

* Motivation: Why heliophysics?

* My view of plasma physics: kinetic, multi-fluid, and MHD approaches.

*  Quick review of particle motion and adiabatic invariants.

* Shocks (basics) and why they are important (collisionless plasmas)

* Magnetic reconnection (basics) and why it 1s important (collisionless plasmas)

Prof. Robert Ergun

Email: ree@lasp.colorado.edu
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Quick Review of Particle Motion and Adiabatic Invariants

Examine the Lorentz force with a

magnetic field (B). Let B be in the z- F=q(E+vXB)
direction. Let’s consider motion in the
x-y plane.
Newton: dv
m E =q (E + v X B)

Break the vector equation into
components:

dv, qE; 4B,

dt m m 7

dvy _qE, 4B,

dt m m *
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Particle Motion and Adiabatic Invariants

Let’s start easy. Let E = 0.

dvy, qB,

d

This equation is that of a harmonic
oscillator.

dv qB
y Z
m Gt m
dzl?x — ﬂ2 _ qu
]

v, = v, cos(Qlt +9)

vy = —%vasin (it + 9)

9 1s an arbitrary angle (phase).
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Particle Motion and Adiabatic Invariants

Let E), be finite. dvy _ 95, v dv, gk, _ 9B, v
dd m 7 dt m m *
This equation is that of a harmonic d*v E

X022 _ 02y ﬁz‘q_ﬂz
oscillator that moves at a constant speed! dt? B, x m

E,y
v, = V,cos(Qt +9) + —
B,

vy = —%vﬂsin (Qt +9)

9 1is an arbitrary angle (phase).
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Single Particle Motion

General Equation

EXB
'I?E= Bz

Other drifts:
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Heliophysics
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* Motivation: Why heliophysics?

* My view of plasma physics: kinetic, multi-fluid, and MHD approaches.

* Quick review of particle motion and adiabatic invariants.

* Shocks (basics) and why they are important (collisionless plasmas)

* Magnetic reconnection (basics) and why it 1s important (collisionless plasmas)
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Stellar winds
travel 100’s
of AU then
collide with
the
interstellar
medium.

The collision
causes as
“shock™,
which
appears as a
curved
structure.

The
heliosphere’s
shock 1s
toward o.-
Centauri.

Ram Pressure/Shocks
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Shocks are
hypothesized
to be at the
root of
cosmic ray
acceleration.

Shocks lead
to strong
turbulence in
plasmas.

Shocks
convert ram
energy into
magnetic and
thermal
energy.
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Magnetic Pressure

2 .
B? (B V)B+pg AN L2 N

Ju
— +pu-V)u=-VP -V
Poc™P 240 Ko Ho

Assume steady state, u =0, g =0,
and that B 1s straight.

B2 2 2
0=-VP-V - F(P+ )=EI - P+ =C
20,
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Ram Pressure / Shocks

Suppose a plasmas impinges on a object, which compresses the plasma as slows the
flow. Steady state, no curvature in B, and not gravity.

Ram Pressure Continuity Equation:

dp
Compressible & 1D Incompressible
(plasma shock) (water pipe)
v )=10
v @J] =0
Constant Constant

Vu = V(pu?) @u- Vu = %F[ﬂuz}

p(u-Vu = V(pu?)

p(u- V==V (pu’)

(We don’t do water.)
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Ram Pressure / Shocks

BZ
V(pu?) = -VP -V

2U,

Suppose a plasmas impinges on a object, which compresses the plasma as slows the
flow. Steady state, no curvature in B, and not gravity.

EZ
2
puc + P + =C
2,
Object or
barrier.
—VP Thermal Pressure
—
Ram Pressure A 4 A 4 A A A A A
> >
plu-Viu
>
> 3
2
—V Magnetic Pressure

Ho HSS, 2025. Page 40



Earth’s Bow Shock
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Ram Pressure / Shocks

S+ P+ B;
p2U; 2T5 "
Object or
- barrier: object’s
Plasma Wind Shock magnetic field
u] 4 AN DO uz
/
P1 P2
> >
B, B,
N\
P, P,

2 - ‘i
Bl _/, i\ ’I BZ \_ P
5. —P2U3 )} \ = M
2u, o \\2;;:{/,,
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Shocks

B
P1 P2
Uy Uy -
P, BN P,
B, B,
Y Y Yyvyyvyyy

Rankine-Hugoniot Jump Conditions
P1uy = Paua

Bju; = Bsu,
piup*+ Py + B2, = pouy™+ Pyt By*/21,

uy(1/2 pyuy®+ y/(y=1) Py + By*/po) = up(1/2 pyuy™+ y/(y=1) Py + By?/1,)

L1100, £4VLO. L agtl 4o



Example: Shocks
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Shocks
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Shocks
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Heliophysics
Summer School

Motivation: Why heliophysics?

My view of plasma physics: kinetic, multi-fluid, and MHD approaches.
Quick review of particle motion and adiabatic invariants.

Shocks (basics) and why they are important (collisionless plasmas)
Magnetic reconnection (basics) and why it is important (collisionless
plasmas)
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Anti-Parallel Magnetic Reconnection

Mognetic Reconnection

1.20
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Magnetic Reconnection

Distance d

Mognetic Reconnection

——— T

T T [ T LI E———y p T I

-~ The frozen-in condition — B—"
- must be violated in a small =
- region where B reconnects. E
- This region is called the ]
- “diffusion region”. =
= Diffusion Region >
- E+vxXB + 0 E
= =
— «— = =
At rRTAN e ~~ e E o X o Vvl VIV 'IY J_____L___'_:__Jt——‘l‘————l\ll‘\\ N
- - Distagce d; ’ ¢
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The Solar Flare Puzzle

The puzzle (1950°s):
Solar flares erupt in minutes (~10? s).

Magnetic diffusion time across 10 Mm is on the order of 10'® s using simple magnetic
diffusion.

3
Earth to Scale

)25. Page 50



Breaking the Frozen-In Condition

The first thought (1950°s) was that collisions are the primary process that break the frozen-
in condition resulting in resistance and diffusion:

E+vxB=n]

Generalized Ohm’s Law

Resistance results in magnetic diffusion:

VX(E + vXB = nJ) . ™
e UXB = ) B G A
| . g \
ifv=0: OB ' c |
4 i 1 VZ B ML i
at U, ~ gl
uo ) '* velocity
tD ~ L B -
n
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Magnetic Reconnection at Earth

Dungy (1961) realized that magnetic reconnection could “open’ the Earth’s
magnetosphere allowing solar wind and its energy to enter. He correctly inferred that
magnetic reconnection is part of the energy transfer from the solar wind that power
aurorae.

Dungy’s model was not well accepted. At the time (1960’s), controversy raged. The
plasma resistance is near zero, so magnetic reconnection could not occur.

E+vxB=n]=0

However, as research went forward (1970°s) the first satellite observations showed
evidence supporting the Dungy model.

Now we have a bigger mystery! Collisionless magnetic reconnection?<s -0>s paoc 5
5 g



The Tokamak Problem

First reported in 1974, magnetic fields in tokamaks would L2
suddenly disrupt resulting in a loss of confinement. These V

o
events were named “sawtooth crashes” due to the nonlinear

0,0 F

3
shape of the signals. % osf
Ultimately, the root cause of sawtooth crashes has been o
. . . 0,6 F
determined to be magnetic reconnection. o5 bl
. . . . . 0,46 0,48 0,5 0,32 0,24 0,36
Once again, the magnetic reconnection rate is much higher time (5)
than expected.
20 ECEILFS 135)
15
5
15 1T s 4 a2z 406 406 | 408
N 0 s
ECESY

-10

A5

”W/Lf“/ﬂﬁ"
L J," i

150 156 180 185 170 175 :
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Magnetorotational Instability — Accretion Disks

The magnetorotational instability in accretion
disks (Velikov, 1959; Chandrasekhar , 1960) is
thought to be primarily driven by the Rayleigh-
Taylor instability.

Recent work now includes magnetic reconnection
and turbulence to describe the nonlinear
evolution.

“If you don 't understand it, invoke magnetic l /
reconnection or turbulence!”

MRI simulation

near a Kerr
black hole.

MRI in an
accretion disk.




v-Ray Bursts

In high-c (magnetic field
energy to kinetic energy)
outflows, magnetic
reconnection can be more
efficient than the internal
shock (Thompson 1994;
Spruit et al. 2001; Lyutikov
& Blandford 2002; 2003).

Ay
> -
-~
X - ~
- .
~ jet axis
_ 7V
-~ Z l
= P S cadnnanes dund

Y -y
N —
—

Several shocks - - also
possible cross-shock IC

Internal Shock

External Shock

Flow decelerating into
the surrounding medium

Collisions betw. diff. Reverse Forward
parts of the flow shocks= => shock

Photospheric
th. radiation

=10" cm ~10"cm

arrection
to the

>10"cm
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Pulsar Nebulae

Extreme particle acceleration (beyond
the radiation reaction limit) in pulsar
nebulae has been inferred from
synchortron radiation. It has been
postulated that particles can be
accelerated well above the classical
radiation reaction limit (160 MeV), by
a relativistic Speiser mechanism inside
of a magnetic reconnection layer
(Uzdensky, Cerutti, & Begelman,
2011).

Simulations of particle acceleration
beyond the classical synchrotron

burnoff limit in magnetic reconnection:

an explanation of the crab flares
(Cerutti et al., 2013).

vF, [Arbitrary units]

Spectral

energy distribution

' >!

10 il S
10"
10* i
10%° I 2
)
10 t O
b -
=\ Sl 2
13 o\ \0 [y
10 | 1 1 [ O al 15
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Magnetic Reconnection in the Solar Wind

Collisionless magnetic reconnection has also been observed in the solar wind (Gosling et
al., 2005; 2007)

50 Exhaust Exhaust
~ Wind
- 3 = MM*-M%
- 0‘
Effective
S/C Trajectory_

Reconnecnoq
Site

Suprathermal
Electron f(v) 2t

07:42 _ 07:48 07:54
UT, 31 March 2006
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Major questions:

Magnetic Reconnection, a Universal Process

Magnetic reconnection has been observed/postulated in vastly differing plasma
environments, from tokamaks to neutron stars to pulsar nebulae, with scale sizes ranging
from cm to Mm, with plasma densities scaling over 12 orders of magnitude, and magnetic
field strengths from nT to >kT. It is associated with turbulence and particle acceleration. Yet,
the physics of the diffusion region was not understood!

Magnetic Reconnection

>
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RERWEN

How does collisionless
magnetic reconnection occur?

\

What physical process breaks 1
the frozen in condition in fast
magnetic reconnection? H

What supports the
reconnection electric field?

How is the magnetic field
energy dissipated?
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Magnetic Reconnection Research

20-30 years agO, it WaS . : . ‘Magn?t'\c Recunn:actionl

recognized that fast - » phere

reconnection and collisionless - 5:,4
reconnection required - _ /

examination of the full

Generalized Ohm’s Law. Diffusion Region ,
>E® E +vXB # 0 ®E<

Several types of MHD

simulations are used to ]

balance E + vxB: s n \

+  Ideal MHD: 0 e —

* Resistive MHD: nJ.
 Hall MHD: JxB/en

N
I

R Y A

o]
Distance d;

Generalized Ohm’s Law:

ol Resist; Hall Electron  Electron
Addl.ng e ecftron pressure or esistive Pressure  Inertia
inertia required one to

abandon MHD. x ‘1' ‘l’ ‘l'
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Hall Reconnection

Ions, which have much larger skin depth (c¢/

®,;) and gyroradii, decouple from B (via Hall term)

resulting in two diffusion regions named the “ion diffusion region” and the “electron diffusion

region’.

Hall MHD was a large
step forward.
However, electrons do

not decouple via the
Hall term.

And since:

JxB-] =0

Hall MHD cannot
account for magnetic
energy conversion.

Magnetic Reconnection
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PIC Simulations

A number of advances came from PIC (Particle-In-Cell; kinetic) simulations:

Primarily in 2D. | e E Pritchett 2010 JGR)

:
0.4
_ 0.3
0.2
I 0.1
0
] -0.1
-0.2
, -0.3

Ion and electron outflows.
(4) Asymmetric magnetic reconnection Uelectron,, Uion,

. . . 10
(reconnection between differing
plasmas) was studied.

(1) Energy dissipation into electrons
was quantified.

(2) Island formation (tearing mode)
was verified.

(3) Particle acceleration methods were
postulated.

10

(5) In 3D, turbulence emerges.

(6) Magnetic reconnection with a finite
guide field differs for anti-parallel
magnetic reconnection.

(7) Electron jets can emerge from
magnetic reconnection.

(8) Much more... — A —



Laboratory Experiments

Laboratory experiments were able to verify or
disprove a number of the theories of magnetic
reconnection.

Ji-E at 330 ps
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Space Measurements of the EDR
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Space Measurements of Magnetic Reconnection

Electron Electron
Pressure Inertia

v
me D]

e?n Dt

Generalized Ohm’s Law: Resistive  Hall

) ,,
& JXB ([ V-P,
E+vXB =nJ] +

en

What MMS observed in the electron diffusion region of anti-parallel magnetic
reconnection:

(a) The Hall term breaks ion coupling (predicted).

(b) Electrons de-couple kinetically forming “crescent distributions”. The reconnection
clectric field is supported by an off-diagonal term in the electron pressure gradient
(predicted by some, e. g. Hesse et al., 2014, but a major controversy prior to MMS).

(¢) Electron heating: 7,> T, (partly predicted by some).
]

(d) Strong, localized energy conversion J-E > 0 (predicted, except MMS observes
much higher values and much more structure.)

Burch et al., Science, 2016



Magnetotail Reconnection

¥
Sub-solar maghetic

rgconnection is at
the magnetopause, ' Magnetotail
roughly 10 Rg: econnection 1s
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Magnetotail Reconnection

Quiet Magnetotail

A

0 -5 -10 -15 -20 -25

MMS is at -20 Rg.
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Magnetotail Reconnection

Excess Magnetic Pressure

] | | | | |

0 -5 -10 -15 -20 -25

Excess magnetic pressure can cause the current sheet to thin.
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Magnetotail Reconnection

Magnetic Reconnection

Toi o MMS Ion Flow

T e o

] | | | | | |
0 -5 -10 -15 -20 -25 -30

Magnetic reconnection can initiate at ~ -15 Rg.
MMS observes a tailward flow typically several 100’s of km/s.
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Magnetotail Reconnection

Tailward Retreat

Ion Flow

0 -5 -10 -15 -20 -25 -30

The magnetic reconnection region often retreats tailward. MMS can
observe the magnetic reconnection.

(1) B=0. (2) V, goes negative to positive. (3) B, goes negative to
positive.
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Magnetotail Reconnection

Tailward Retreat

Ion Flow

Fl
on Flow I:
MMS

| | | | | |
-5 -10 -15 -20 -25 -30

After the magnetic reconnection region retreats, MMS observes a
carthward flow and B, positive. “Flow reversal” is an excellent
indicator.
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Electron Acceleration: Near-Earth Event
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Electrons lons lons
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B

Electron Acceleration: Near-Earth Event
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Electron Acceleration: Near-Earth Event

Turbulent Region 1 MMS2 Turbulent Region 2
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Electron Acceleration: Near-Earth Event

Turbulent Region 1 MMS2 Turbulent Region 2
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Electron Acceleration: Near-Earth Event
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Heliophysics
Summer School

Part 2
* Particle Acceleration Basics.
* Magnetotail Reconnection
 Turbulent acceleration: electrons.
e Turbulent acceleration: 1ons.

Prof. Robert Ergun

Email: ree@lasp.colorado.edu
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Magnetotail Reconnection

Electron Acceleration

Electron acceleration can be
dominated by stochastic energization
in strong turbulence, when present.

Electron acceleration is a natural
consequence of turbulence: higher-
energy particles are first in line
receiving dissipated energy.

Electron acceleration in turbulence
can be greatly amplified by trapping
in a magnetic depletion.
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Electron Acceleration: Near-Earth Event
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Electron Acceleration: Near-Earth Event
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Electron Acceleration: Near-Earth Event
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Electron Acceleration: Near-Earth Event
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Electron Acceleration: Near-Earth Event
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The Physics Part of Heliophysics

Magnetic Reconnection Particle Acceleration

Turbulence
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