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Scope

- Data management policies, 
including access and dark data

- Communication and 
storage technologies with 
extreme capacities

- Learning, 
inference, 
prediction and 
knowledge 
discovery for 
large volume and 
dynamic data

- Tools for distant 
data sharing, real-
time visualization, 
and software 
reuse of complex 
datasets

- Cross disciplinary 
information and 
knowledge sharing; 
interoperability

Data Life Cycle 

Collection, Storage and 
Management 

Data Analytics

Data Sharing and 
Collaboration

- Data mining
 to enable 
automated 
hypotheses, 
event correlation 
and anomaly 
detection

- Computational, 
mathematical, 
statistical and 
algorithmic 
techniques for 
modeling high 
dimensional data

- Remote 
operation and 
real-time access to 
distributed data

- Data representation, 
storage and retrieval



Outline

1. State/Space Abstraction: Physical Parameters/Observations

2. Integral Equation/Differential Equation Model

3. Taxonomy of Inverse Problems/Solutions

4. Stationary Inverse Problem
I Deterministic and variational methods
I Statistical estimation methods
I Iterative methods

5. Dynamic Inverse Problem
I The Kalman filter
I The ensemble Kalman filter (EnKF)
I Transition to Learning



Examples of Observation/State Mappings

X:!
n

Y:!
m

A

e.g., y(t) = A(x)
x y

Temperature, Density,
Composition, Electric Field, Doppler spectrum

Ne TEC

Volume Emission rate Photometric Brightness



State/Observation abstraction
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Observation: 
• goal: given a set of 

observations and a 
forward model relating 
the state to the 
observables, determine 
the state parameters; 

• challenges: 
observability, invertibility

Simulation: 
• goal: given initial 

conditions and forcing 
parameters, generate  
simulated state 
parameters 

• challenges: drivers 
often need to be 
(inferred) estimated 
from observation

Learning:
• goal: given a set of 

observations and the 
corresponding state 
parameters, learn the 
system (forward 
model)--system 
identification

• challenges: need 
sufficient and reliable 
observations

L{·}{xi(t)} {yj(t)}
state

L{·}{xi(t)} {yj(t)}
observation initial 

conditions + 
forcing

simulated 
state

• Task of inference: given 2 entities in this triplet, estimate (infer statistically) 
the third.  Techniques for accomplishing this task have been in development 
for a century and continue to gain sophistication. 

L{·}{xi(t)} {yj(t)}

?



Integral Equation Model of Inverse Problems

x(t): unknown quantity of interest
y(t): observed (measured) quantity

• General case (nonlinear): y(t) = h(t, x(τ))
• Nonlinear but additive: y(t) =

∫
h(t, τ, x(τ))dτ

• Linear observations:

y(t) =

∫
h(t; τ)x(τ)dτ (1)

FIEFK (when the integral has finite limits)
h(t; τ): kernel or response function of the system
in general not translation-invariiant



Linear Integral Equations: Examples

• Inverse source problems: Determine source distribution x from mea-
sured emitted radiation y:

∇2y + ky = −4πx, k =
2π

λ
wave number of emitted radiation (2)

Partial differential equation; integral equation form can be written as:

y(r) =

∫
h(r − r′)x(r′)dr′ where h(r) =

ekr

r
(3)



Linear Integral Equations: Examples

• Heat Equation: Determine y(s, 0) = x(s), i.e., initial state, from
y(s, t)

∂y(s, t)

∂t
= ∇2y(s, t), t > 0 (4)

Corresponding integral equation form can be written as:

y(s, t) =

∫
h(s− u, t)x(u))du where h(s, t) =

1

4πt
e−|s|

2/4t (5)

Inverse problem: deblurring– deconvolution with a Gaussian blur kernel

• Atmospheric turbulence: h(r, s) = e−πα
2(r2+s2)



Linear Integral Equations: Examples
(Continued)

• Linear system (signal processing) perspective

∑

k

(ak
dk

dtk
)y(t) =

∑

j

(bj
dj

dtj
)x(t) (6)

⇒ Y (s)

X(s)
= H(s) =

∑
bks

k

∑
aksk

(7)

y(t) =

∫
h(t− τ)x(τ)dτ (8)



Linear Integral Equations: Examples
(Continued)

• Image reconstruction from projections:

yθ(u) =

∫ ∞

−∞
x(t, s)δ(t cos θ + s sin θ − u)dtds. (9)

h(u, θ; t, s) = δ(t cos θ + s sin θ − u) (10)

Y (r) =

∫

Ω

h(r; r′) X(r′) dr′ (11)

For a two-dimensional observation geometry r = (r, s) with r and s
denoting the two spatial variables and Ω ⊂ R2 is the region of sup-
port. For a three-dimensional observation geometry r = (r, s, t) with t
denoting the third spatial variable and Ω ⊂ R3.



Discretized integral equation

For a nonanalytical solution, the unknown field X(r) must be dis-
cretized. Assuming that the unknown field can be adequately repre-
sented by a weighted sum of N basis functions {φj(r)}Nj=1 as follows:

X(r) =
N∑

j=1

xj φj(r) (12)

For instance, {φj(r)}Nj=1 are often chosen to be the set of unit height
boxes corresponding to a 2-D or 3-D array of pixels. In that case, if
a square g × f pixel array is used, for example, then N = g · f and
the discretized field is completely described by the set of coefficients
{xj}Nj=1, corresponding to the pixel values.



Algebraic form

Collecting all the observations into a vector y of length M , and the
unknown image coefficients into a vector x of length N :

y = Hx (13)

where H ∈ RM×N is the linear operator relating the unknown field to
the observations comprised of inner products of the basis functions with
the corresponding observation kernel:

(H)ij =

∫

Ω

hi(r
′)φj(r

′) dr′, 1 ≤ i ≤M, 1 ≤ j ≤ N (14)

where hi(r
′) = h(ri; r

′) denotes the kernel function corresponding to
the i-th observation.
A more complete model including measurement uncertainty component
denoted by w, i.e.,

y = Hx+w (15)



Example: pB Coronagraph Images
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Data source: Mk4 coronagraph.

Sampling rate: 1 time averaged image/day.

Image resolution: 960× 960 pixels (65% are data).

Field of view: 1.12 – 2.79 R�.

Pixel size: 4,350 km (at solar surface).



The Relationship Between pB and Ne

Each pixel of a white-light, polarized brightness (pB) coronagraph image
is proportional to Ne integrated along the pixel’s line of sight.

e -1

SOHO

Line of sight

s+ tθ

e -1

pB = C
∞∫
−∞
A(s+ tθ)Ne(s+ tθ)dt

≈ C
N∑
j=1

A(s+ tjθ)xj∆tj

=⇒ yi ≈ Aix+ vi



Exploitation of Solar Rotation

Solar rotation provides a unique set of line integral measurements of Ne

over a 14 day period (corresponding to 180◦ of rotation).

SOHO

STEREO 2STEREO 1

θs θs

SOHO

STEREO 2STEREO 1

θs θs

(a) y1 = A1x+ v1 (b) y2 = A2x+ v2



y1

...

y14


 =



A1

...

A14


x+



v1

...

v14


 =⇒ y = Ax+ v



Mathematical Statement of Inverse Problems

Given y ∈ Y and a linear operator H : X → Y find x ∈ X such that

y = Hx (16)

• X: Object space
Space where you choose to look for solution
Choice of X encodes prior knowledge

• Y : Data space
Space where observations live
In general Y ⊃ HX



System Invertibility
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Long history... Hadamard 1915!
The inverse problem y = Lx  
is well posed when
• Existence: ∀y, ∃x s.t. y = Lx. 
• Uniqueness: Lx1 = Lx2 ⇒ x1 = x2 

• Stability: L−1 is continuous.
◮ otherwise... ill posed! 

Finite dimensional, linear case
◮ Existence: Least squares 
◮ Uniqueness: Minimum norm solution 
◮ Stability: Condition number?

L{·}{xi(t)} {yj(t)}

L−1{·}

⇒

{yj(t)} {xi(t)}



Existence, Uniqueness, and Stability

• Case 1: Exact Solution

N(H) = {0}; Mapping is injective; full col rank; uniqueness satisfied
R(H) = Y (Range = Co-domain); Mapping is surjective; full row rank;
existence satisfied
H is square and full rank

• Case 2: Non-existence

R(H) ⊂ Y ; mapping not surjective; overdetermined case; n degrees of
freedom and m > n constraints

• Case 3: Non-uniqueness

N(H) 6= {0}; mapping not injective; underdetermined case



Least Squares

Notation: l-norm: ||x||l = l
√∑

i |xi|l
||x||2 =

√∑
i |xi|2: Usual measure of length

• Idea: Find x̂LS that minimizes the length of the error vector e =
y −Hx̂LS

arg min
x
||e||22 = arg min

x
{‖y −Hx‖2

2} (17)

= arg min
x
{(y −Hx)T(y −Hx)} (18)

Solving the minimization problem by setting ∂/∂x = 0 we arrive at the
LS solution:

HTHx̂LS = HTy or x̂LS = (HTH)−1HTy (19)



Weighted Least Squares

• Idea: If the measurements are not equally reliable, attach weights to
the errors and minimize ||We||22 = ||W(y −Hx)||22.
In other words, find the least squares solution to WHx = Wy.
Solve

(WH)TWHx̂WLS = (WH)TWy (20)

HTWTWHx̂WLS = HTWTWy (21)

• Question: What is a rational way of determining an optimal W?
• Approach: Use the knowledge of the average size (or expected value)
of ei, e

2
i , eiej



Generalized inverse

A pseudoinverse for the system of equations in (13) may be calculated,
for example, via the singular value decomposition (SVD). In terms of
the SVD this solution is given by

x̂SVD =
n∑

i=1

vi < u
T
i ,y >

σi
(22)

where n is the rank of H ; vi and ui are the column vectors of the
unitary matrices V and U , respectively; and σi are the singular values
or the diagonal elements of Σ in the singular value decomposition of H :
H = UΣV T . This inversion approach produces the miminum norm,
least squares estimate of x and in the absence of noise can produce
reasonable reconstructions.



Noise and the generalized inverse

An approach for coping with the ill-conditioning of the system matrix
is based on truncating the sum in the SVD reconstruction. This idea is
based on the observation that applying the SVD decomposition in the
presence of noise to the system of equations in (15) can be shown to
yield

x̂SVD = x+
n∑

i=1

vi < u
T
i ,w >

σi
(23)

Since the noise generally has power along all directions and σi gets
small as i increases, we can see that this solution becomes dominated
by noise in the second term. This is a reflection of the ill-conditioning
of the problem.



Iterative solutions

The most common approach to reconstructing x is based on iterative
inversion of H . The reconstruction method consists of making an initial
guess, denoted by x(0), followed by cyclically projecting the initial guess
onto the hyperplanes defined by the observation equations. The process
is repeated until convergence is achieved. More specifically, the following
recursion relation is used for the calculation of the object:

x(i+1) = x(i) − α(i)HT (Hx(i) − y) (24)

Starting with an initially smooth solution, the iterations restore the
modes that have the highest singular values iteratively.



Stochastic System Model
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A stochastic system comprises the following: 
• an input random process              characterized by a probability density 

function; 
• an output random process             ;
• a description of the mapping          characterized by a conditional 

density.

{xi(t)}

■ Ingredients

{yj(t)}
L{.}

L{·}
stochastic model:

p(x(t)) p(y(t))

p(y(t) | x(t))



Stochastic System Model of Observation 
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A system model of observation: 
• input: stochastic characterization of state parameters, e.g., temperature, 

density, ion composition, electric field, wind; 
• output; observed Doppler power spectrum (stochastic quantity);
• a forward model based on conditional density 

L{·}

state observation

L−1{·}

⇒

observation state

p(y(t) | x(t))

p(x(t) | y(t))

p(x(t)) p(y(t))

p(y(t)) p(x(t))

Estimation rule:
MMSE:
MAP: argmax  

E(x(t)|y(t))

p(x(t)|y(t))



Weighted Least Squares
(Statistical Interpretation: ML)

x̂ML = arg max
x
{p(y|x)} (25)

If noise can be modeled as Gaussian, the conditional probability p(y|x)
is also a Gaussian, with the following mean and covariance,

p(y|x) ∼ N (Hx,Re)

= e−
1
2

(y−Hx)TR−1
e (y−Hx) (26)

the ML estimate takes the following optimization form:

x̂ML = arg max
x
{ln p(y|x)}

= arg max
x
{−1

2
(y −Hx)TR−1

e (y −Hx)}

= arg min
x
{‖y −Hx‖2

R−1
e
} (27)

Solving the minimization problem by setting ∂/∂x = 0 we arrive at the
ML solution:

x̂ML = (ATR−1
e A)−1ATR−1

e y (28)

The estimation error is defined as:

eML = x− x̂ML (29)

which can be shown, using substitution and simple algebra, to equal:

eML = − (ATR−1
e H)−1HTR−1

e (30)

Finally, the ML estimation error covariance is given by:

RML = E{eeT}
= (ATR−1

e H)−1 (31)



Maximum Likelihood

Solving the minimization problem by setting ∂/∂x = 0 we arrive at the
ML solution:

x̂ML = (HTR−1
e H)−1HTR−1

e y (32)

The estimation error is defined as:

eML = x− x̂ML (33)

which can be shown, using substitution and simple algebra, to equal:

eML = − (HTR−1
e H)−1HTR−1

e w (34)

Finally, the ML estimation error covariance is given by:

RML = E{eeT}
= (HTR−1

e H)−1 (35)



MAP Estimation and Error Covariance

x ∼ N (0,Rx) (36)

x̂map = argmax {p(x|y)} = argmax {p(y|x)p(x)}
x x

(37)

p(y|x) and p(x) can be expanded respectively as:

p(y|x) ∼ N (Hx,Re) =
1

(2π)
m
2 |Re|

1
2

exp {−1

2
(y −Hx)TR−1

e (y −Hx)}
(38)

p(x) ∼ N (0,Rx) =
1

(2π)
m
2 |Rx|

1
2

exp {−1

2
xTR−1

x x} (39)



MAP Estimation and Error Covariance
(continued)

x̂map = argmax {−1
2
(y −Hx)TR−1

e (y −Hx)− 1
2
xTR−1

x x}
x

(40)

x̂map = argmin {‖y −Hx‖2
R−1

e
+ ‖x‖2

R−1
x
}

x
(41)

It can be shown that the solution to this minimization problem, x̂map,
is given by:

x̂map = Rx̂map(HTR−1
e y) (42)

where Rx̂map is the estimation error covariance given by:

Rx̂map = (R−1
x + HTR−1

e H)−1 (43)



Regularization

A general formulation for the cost function (the objective function) can
be expressed as:

Φ(x) = ‖y −Hx‖2
W +

∑

i

γiCi(x) (44)

where ‖y − Hx‖2
W denotes the weighted residual norm, i.e., (y −

Hx)TW(y −Hx), Ci and γi are the i-th regularization functional
and regularization parameters respectively, and W is an appropriate
weight, all to be chosen according to the specifics of the problem.



Tikhonov (quadratic) regularization

The most common technique used for regularization and is equivalent to
maximum a posteriori (MAP) estimation assuming Gaussian statistics
for both the unknown image and noise. Assuming w ∼ N (0,Σw) and
x ∼ N (x0,Σx), where N (µ,Σ) represents the normal distribution
with mean µ and covariance Σ, the MAP estimate is:

x̂MAP = arg min
x∈RN

[− log p(y|x)− log p(x)]

= arg min
x∈RN

[
‖y −Hx‖2

Σ−1
w

+ ‖x− x0‖2
Σ−1

x

]
(45)

= x0 + (HTΣ−1
w H + Σ−1

x )−1HTΣ−1
w (y −Hx0)



The connection between this MAP formulation of Tikhonov regular-
ization and the variational form just discussed becomes apparent by
assuming independent identically distributed (IID) Gaussian noise and
taking Σx = 1

γ2
(LTL)−1, hence arriving at the well known Tikhonov

regularization functional:

x̂Tik = arg min
x∈RN

[
1

σ2
w

‖y −Hx‖2
2 + γ2‖L(x− x0)‖2

2

]

= arg min
x∈RN

[
‖y −Hx‖2

2 + λ‖L(x− x0)‖2
2

]

= x0 + (
1

σ2
w

HTH + γ2LTL)−1 1

σ2
w

HT (y −Hx0) (46)

where L is the positive definite regularization matrix and λ = (γσw)2

where σ2
w is the variance of the noise samples. A special case is when

L = I, which results in λ being inverse of the signal-to-noise ratio.



Regularization and its Stochastic
Interpretation

x̂Tik = argmin
x

‖y −Hx‖2
2︸ ︷︷ ︸

Data Fidelity

+ γ2‖Lx‖2
2︸ ︷︷ ︸

Prior Info

• Idea: Include prior information into solution
• Interpretations:

– Add additional constraint: Penalize large values of Lx
(e.g. L = ∇)

– Improves conditioning: (HTH + γ2LTL)x = HTy
– Equivalent to MAP estimate with prior: pX(x) ∝ e−γ

2xTLTLx

• γ controls tradeoff between data and prior information
• Truncates “H−1” at high frequency



Dynamic Inverse problem: Example

Inputs
Measurements of the Sun at 171Å

2003/10/05

1024×1024 pixels
(M = 10242)

Height/width
≈ 2× 106 km

y1



Solar Tomography

Inputs
Measurements of the Sun at 171Å

2003/10/06

1024×1024 pixels
(M = 10242)

Height/width
≈ 2× 106 km

y2



Solar Tomography

Inputs
Measurements of the Sun at 171Å

2003/10/07

1024×1024 pixels
(M = 10242)

Height/width
≈ 2× 106 km

y3



Solar Tomography

Inputs
Measurements of the Sun at 171Å

2003/10/08

1024×1024 pixels
(M = 10242)

Height/width
≈ 2× 106 km

y4



Solar Tomography

Outputs

(a) “Good” static re-
construction

(b) Static reconstruc-
tion with “smearing”
artifacts

(c) A 100 × 100 ×
100 voxel grid has
one million unknowns
(N = 106)!
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General State-Space Signal Model

The general hidden Markov model (HMM):

Initial prior: px1(x1) (47)

Measurement/forward model: hi(yi|xi) (48)

State-transition model: fi(xi+1|xi) (49)

dim(xi) = N dim(yi) = M

Goal: Compute minimum mean square error (MMSE) estimates of the
unknown state xi given the measurements y1:j , {y1, . . . , yj}.

x̂i|j , E[xi|y1:j] =

∫
xi p(xi|y1:j) dxi (50)



Filtering, Smoothing, and Prediction

Estimate (x̂i|j) Data (y1:j) Purpose

Filtered j = i Online processing – estimates are
based on currently available data.

Predicted j < i For forecasting the future evolution
of the dynamic process.

Smoothed j > i Offline processing – estimates based
on all available information.

• Smoothed and predicted estimates are typically computed by further
processing of the filtered estimates x̂i|i.

• Filtered (posterior) estimates x̂i|i may be recursively computed using
the previous one-step prediction (prior) x̂i|i−1 =⇒ j ∈ {i, i− 1} for
this talk.



Difficulties With The General Model

x̂i|i , E[xi|y1:i] =

∫
xi p(xi|y1:i) dxi

Problem #1: The posterior PDF p(xi|y1:i) cannot generally be found
in closed form. Special cases:

• The linear Gaussian model (discussed next).

• Exponential families with conjugate priors.

(The above list of special cases is nearly exhaustive)



Difficulties With The General Model

x̂i|i , E[xi|y1:i] =

∫
xi p(xi|y1:i) dxi

Problem #2: Numerical approximation of the posterior and evaluation
of the conditional mean requires N dimensional quadrature.

p(xi(1)|y1:i)

xi(1)

p(xi(1), xi(2)|y1:i)
xi(2)

xi(1)

1D – 8 function evaluations 2D – 82 function evaluations

Quadrature requires an exponential increase in computational effort with
the dimension of the state (i.e., the curse of dimensionality)!



Linear Additive-Noise State-Space Signal
Model (Linear Gaussian Model)

Initial prior: E[x1] = µ1, Cov(x1) = Π1 (51)

Measurement/forward model: yi = H i xi + vi (52)

State-transition model: xi+1 = F i xi + ui (53)

• The second order statistics of the zero mean state (ui) and mea-
surement (vi) noise are given: Cov(ui) = Qi and Cov(vi) = Ri.

Goal: Compute linear minimum mean square error (LMMSE) estimates
of the unknown state xi given the measurements y1:j.



The Kalman Filter

Time Update (x̂i|i → x̂i+1|i)

x̂i+1|i = F ix̂i|i

P i+1|i = F iP i|iF
T
i + Qi

Measurement Update (x̂i|i−1 → x̂i|i)

Ki = P i|i−1H
T
i

(
H iP i|i−1H

T
i + Ri

)−1

x̂i|i = x̂i|i−1 + Ki

(
yi − H ix̂i|i−1

)

P i|i = P i|i−1 − KiH iP i|i−1

i = 1

x̂1|0 = µx1

P 1|0 = Π1

i = 2

x̂i|i
P i|i

i = i + 1

x̂i+1|i, P i+1|i

yi x̂i|i

The N ×N matrix P i|j is the estimator error covariance:

P i|j , Cov(xi − x̂i|j) (54)

Almost 2 TB of computer memory is required to store P i|j when the
state dimension N = 106 and all operations involving P i|j become
prohibitively computationally costly!



Approximate Kalman Filters

All large-scale methods make some form of dimension reducing approx-
imation to reduce computational complexity.

4DVAR: Deterministic state-transition model and a low-
dimensional parametric model for the prior error
covariance Πi. No mechanism to systematically
adjust estimates when true system dynamics devi-
ate from the deterministic model.

Banded KF: Eliminate all bands of the error covariance beyond
some distance from the diagonal. Will result in
numerical instability.



Ensemble Kalman Filter (EnKF)

Idea: Update an ensemble of samples {x̃1
i|j, . . . , x̃

L
i|j} such that the

sample mean and covariance approximate the KF estimate x̂i|j and
estimator error covariance P i|j.

i = 1

x̃l
1|0

i.i.d.∼ N (µ1,Π1)

1 ≤ l ≤ L

Measurement Update (x̃l
i|i−1 → x̃l

i|i)

x̃i|i−1 = 1
L

∑L
l=1x̃

l
i|i−1, zl

i|i−1 = x̃l
i|i−1 − x̃i|i−1

Bi , (Ci ◦ P̃ i|i−1)H
T
i = [Ci ◦ 1

L−1

∑L
l=1z

l
i|i−1(z

l
i|i−1)

T ]HT
i

K̃i = Bi[H iBi + Ri]
−1

xl
i|i = xl

i|i−1 + K̃i(y
l
i − H ix

l
i|i−1), yl

i
i.i.d.∼ N (yi,Ri)

Time Update (x̃l
i|i → x̃l

i+1|i)

x̃l
i+1|i = F ix̃

l
i|i + ul

i

ul
i
i.i.d.∼ N (0,Qi)

i = 2

≈x̃i|i x̂i|i

P̃ i|i ≈ P i|i

x̃i|i

i = i + 1

yi

x̃i+1|i ≈ x̂i+1|i, P̃ i+1|i ≈ P i+1|i

The ensemble size L is a trade-off between the estimate quality and
computational effort.



Example: Electron Density Reconstruction

• The data source is the Mk4 coronagraph at the Mauna Loa Solar
Observatory.

• We show reconstructions of electron density from Oct. 15 – Nov. 24,
2003 (which includes the intense “Halloween” solar storm).

• The ith 3-D static estimate is based on data from day i and 13 days
prior to day i.

• We use the random walk state dynamic model F i = I.

• Each 3-D static estimate required ≈ 10 minutes of processing and
the complete 4-D EnKF reconstruction required ≈ 17 minutes.



4-D Reconstruction - 11/2
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(a) Static reconstruction (b) EnKF reconstruction



Learning Model Parameters Of Dynamic
Systems

• In most geophysical applications, first principles physics drives the
choice for the model of the dynamic system.

• In any case, the dynamic model will only be partially and imperfectly
known and may depend on unobservable parameters.

• In many practical scenarios it is necessary to estimate the state of the
unknown object jointly with the unknown parameters of the dynamic
model.



Linear Conditional State-Space Model

Initial prior: E[x1] = µ1, Cov(x1) = Π1 (55)

Measurement/forward model: yi = H i xi + vi (56)

State-transition model: θi ∼ p(·|θi−1) (57)

xi+1 = F (θi)xi +G(θi)ui (58)

• The conditional matrix G(·) allows for mixing of the state noise ui.

• Both the state transition matrix F (·) and the state noise mixing
matrix G(·) are dependent on the hidden Markov process θi.

• Simple example: binary parameter θi which indicates if the Sun is
in a low or high state of dynamic activity.


