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A bit about me

❖ Grew up in Vancouver, BC, Canada 

❖ BS: Electrical Engineering, University of Southern 

California

❖ MS/PhD: Electrical Engineering, Stanford University

❖ Postdoc (< 2 years) at Boston University

❖ Research Associate (4 years) back at Stanford

❖ Now 10 years at University of Colorado Boulder, 

Aerospace Engineering Sciences

❖ Tenured in 2022

❖ Sabbatical in 2023: Orléans, France

❖ Associate Chair for Graduate Studies: 2023—present
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The LAIR Research Overview
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CubeSats for Space Science
Modeling, Simulation, 

and Data Analysis
Instrumentation



Ionosphere Lectures: Goals

❖ Understand basic physics of the Earth’s ionosphere

❖ Origin, composition, layers

❖ Variations: diurnal, seasonal, solar cycle, plus other anomalies

❖ Effects of the Ionosphere on Spacecraft and technology

❖ Radio communications and GPS
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Origin of the Ionosphere
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❖ The Ionosphere is a product of two 

regions: the Sun and the Atmosphere



Ionization thresholds

❖ Require a minimum energy to free an electron from an 

atom or molecule

❖ Require a photon with at least this minimum energy: 

“ionizing radiation” or sometimes just “radiation”

❖ Ionization cross section provides energy-dependent 

picture of ionization probability
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Ionization Energy
Minimum

photon wavelength

H 13.6 eV 91 nm (910 A)

He 24.6 eV 50 nm

O 13.62 eV 91 nm

Ar 15.76 eV 79 nm

N2 15.6 eV 80 nm

O2 12.1 eV 103 nm



Earth’s Ionosphere

❖ Right: ionization density changes by 100x day vs 

night, and 10x or more with solar cycle
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❖ Ionosphere altitudes and layers have a lot to 

do with where solar radiation is absorbed!



Ionosphere Composition and Density
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Why does the Ionosphere have a peak at some altitude? 

❖ The atmosphere is exponentially increasing all the way to the ground. 

What about the ionosphere? 
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Chapman Layer
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Chapman Layer

❖ Production higher, and lower in altitude, for lower zenith angle (i.e. noon)

❖ Peak in production is near where intensity is about half the incident value
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Ionospheric Chemistry

❖ Ionosphere is in equilibrium when ionization production and loss mechanisms balance

❖ Production: photoionization; energetic particle precipitation; collisions

❖ Loss: recombination; charge exchange; chemistry
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Electron Density Profile

❖ Balancing production (ionization) with loss (recombination), we get an equilibrium 

electron (or ion) density below

❖ Higher, less dense for increasing zenith angle

❖ Reminder: this is for a single species, 

and single photon wavelength!
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Ionosphere Layers

❖ Different wavelengths are absorbed at different altitudes, 

by different species

❖ I(z) depends on wavelength-dependent absorption for each 

species

❖ P(z) depends on wavelength-dependent ionization cross 

sections for each species

❖ Right: top white curve is I(z) decay by e-0.5; 

middle white curve by e-1; 

bottom white curve by e-1.5

❖ Red areas: I(z) is basically I∞ 

Black areas: I(z) is basically zero
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Primary Production / Loss channels
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E-region
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F-region

17



F-region
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D-region

❖ D-region is known for low electron densities, light and heavy 

positive and negative ions, and complex chemistry.

❖ Production:

❖ N2 + 𝛾 ⟶ N2
+ + e−

❖ O2 + 𝛾 —> O2
+ + e−

❖ NO + 𝛾 —> NO+ + e−

❖ Negative ions formed by attachment processes:

❖ O2 + e− + O2 —> O2
− + O2

❖ O2 + e− —> O2
− + 𝛾

❖ Detachment:

❖ O2
− + 𝛾 —> O2 + e−

❖ O2
− + O2 —> O2 + e− + O2
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D-region chemistry and “cluster ions”

❖ D-region also contains heavy water cluster ions of the form (H2O)nH+

❖ Requires more complex chemistry models to evaluate ne profiles
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Sodankyla Ion and Neutral Chemistry (SIC) model:



Topside Ionosphere

❖ Above ~350 km, densities are so low that ions 

are not dominated by chemistry, but hydrostatic 

equilibrium
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Summary of Layers

❖ Layers are dominated by different ions

❖ Ion densities controlled by balance between production and 

loss; depends on chemical reactions in each altitude range

❖ Decay of layers at night depends on recombination rates 

and densities: low densities at high altitudes mean few 

collisions
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Ionosphere Temperatures

❖ Below 110 km, temperatures are made equal 

by collisions

❖ Above ~110 km, collisions are rare, so each 

species gets its temperature through different 

heating processes (radiation absorption, 

convection, etc) 

❖ Above ~110 km: ions, electrons, and neutrals 

have different temperatures

❖ Remember: this simply means they have 

different velocity / energy distributions
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Ionosphere Variability
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Transport

❖ A variety of processes move plasma in the ionosphere:

❖ Winds: neutral winds drag ions along with them, if collision frequency is high enough

❖ Drifts: various forces cause plasma to “drift”: 

❖ electric and magnetic fields; 

❖ gravity; 

❖ pressure; etc.

❖ These contribute to complex spatial and temporal variations in the ionosphere
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Global variation: Snapshots
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Global variation: Snapshots

❖ TEC = Total electron content; integrated in altitude, 1 TECU = 1016 el/m2
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foF2 and hmF2

❖ We often characterize the ionosphere by its peak 

density, foF2, and the altitude where that occurs, 

hmF2

❖ foF2 is a frequency in MHz. related to electron 

density: 

❖ hmF2 is simply altitude in km
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Solar Cycle Variation

❖ Densities are much higher (order of magnitude) at 

solar maximum compared to solar minimum

❖ Higher EUV / X-ray fluxes lead to higher ionization 

rates
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Equatorial Electrojet

❖ Plasma physics involving B-field lead to an intense current that 

flows East in the dayside ionosphere

❖ Restricted to narrow region in latitude; 110-130 km altitude
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Magnetic field
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Equatorial Anomaly

❖ Due to the EEJ current, an electric field arises

❖ E x B leads to a drift (known as E x B drift) in the vertical direction

❖ Plasma rises, but then above some altitude, falls back down along field lines

❖ “Fountain effect” 
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Equatorial Anomaly
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Storm-time variability: Gannon Storm 2024

❖ TIE-GCM model runs

❖ Considerably higher TEC at high latitudes: energetic particle precipitation (EPP)

❖ TEC at low latitudes not significantly different here…

❖ Equatorial anomaly prominent in evening sector, less so in dawn / noon sector
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Storm-time variability: Gannon Storm 2024

❖ TIE-GCM model runs

❖ Storm associated with 

increased EUV, X-ray: leads 

to higher ionization rates

❖ Higher temperature in the 

thermosphere raises the entire 

ionosphere
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Lots more to the Ionosphere / Atmosphere system…
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Ionosphere Effects: 
Radio Wave Propagation



Radio Wave Propagation

❖ Time for some (more) plasma physics!

❖ Plasma oscillations

❖ Plasma frequency

❖ index of refraction (from Maxwell’s equations)

❖ Add collisions: absorption

❖ MUF, LUF, X-ray effect
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Plasma Oscillations
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Reflection of EM Waves

❖ Plasma frequency 𝜔p directly related to electron density

❖ Radio waves above 𝜔p pass through the ionosphere; electrons cannot respond fast enough

❖ Radio waves below 𝜔p are reflected; electrons are “shaken” and re-radiate
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❖ Implications: 

❖ must use frequencies above 𝜔p to 

talk to satellites

❖ Can communicate over-the-horizon 

with frequency near / below 𝜔p



Critical Frequencies in the Ionosphere
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❖ In the F-region, fc ~ 3—30 MHz

❖ higher frequencies pass through the ionosphere, 

with some refraction

❖ over-the-horizon radio

❖ In the E-region, fc ~ 1—2 MHz

❖ but sporadic-E increases fc up to 100 MHz

❖ In the D-region, our model breaks.

❖ Lots of neutrals means high collision frequency; 

our index of refraction is more complicated.

❖ Absorption of MHz 

waves (next)

❖ Reflection of waves 

below ~100 kHz; VLF 

waves (below ~50 kHz) 

used for long-range 

communications with 

submarines



Index of refraction in a cold plasma

❖ In general, index of refraction is given by the Appleton-Hartree equation:
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D-region absorption

❖ As electrons get excited by waves with f < fc, the collide with neutrals

❖ Some of the EM wave energy gets transferred to heat; radio waves suffers absorption

❖ How much absorption? 
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Collision Frequency? 

❖ Electrons (few) randomly collide with neutrals (many)

❖ Radio wave energy converts to electron kinetic energy and then to neutral thermal energy (i.e., neutrals 

are “heated”)

❖ This is collisional heating, and a sink for radio wave energy
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❖ Collision frequency depends on neutral 

density (N2, O2) and on electron 

temperature

❖ Does not depend on electron density; why?



D-region absorption

❖ Shown here: absorption of 30 MHz radio 

wave due to electron precipitation from 

the radiation belts
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❖ Riometer: passive instrument that measures D-region 

absorption by monitoring cosmic noise at ~30 MHz



Sudden Ionospheric Disturbances (SIDs)

❖ SID is ionospheric response to a solar flare (X-rays)

❖ X-rays ionize the D-region, causing a huge increase in D-region electron density (orders of magnitude)

❖ Higher ne leads to higher radio wave absorption

❖ Lower D-region reflection height perturbs VLF signals
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Short-Wave Fade

❖ Issue for over-the-horizon radar

❖ There is a maximum frequency we can use, above 

which waves pass through the F-region

❖ There is a minimum frequency we can use, because 

❖ lower frequencies 

suffer too much absorption

❖ Usable “Frequency Window”

❖ After a major X-ray flare, Absorption can increase to 

prevent any useful communication
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𝑑𝐴

𝑑𝑙
= 4.6 × 10−5

𝑛𝑒𝜈

𝜔2



GPS and TEC

❖ Even for frequencies above fc, the ionosphere 

introduces some interesting effects

❖ Small change in index of refraction from

❖ Expand in Taylor series: 

❖ Cut off after first term:

❖ Change in path length: 

❖ Where TEC is total electron content, 

integrated along signal path
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TEC maps

❖ 1 TECU = 1016 el/m2

❖ receivers all over the Earth’s surface; 

20+ satellites to provide pierce-points

❖ Interpolate results onto 2D (or 3D) map
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GPS TEC and ionospheric science

❖ GPS TEC can be used to observe 

ionospheric disturbances

❖ “Plume” here, extending over North America, 

is footprint of plasmasphere “plume” during 

geomagnetic storm
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