# The lonosphere

Origins, Structure, and Variability

Robert A. Marshall

#### A bit about me

- Grew up in Vancouver, BC, Canada
- BS: Electrical Engineering, University of Southern California
- MS/PhD: Electrical Engineering, Stanford University
- Postdoc (< 2 years) at Boston University</li>
- Research Associate (4 years) back at Stanford
- Now 10 years at University of Colorado Boulder,
   Aerospace Engineering Sciences
  - Tenured in 2022
  - Sabbatical in 2023: Orléans, France
  - Associate Chair for Graduate Studies: 2023—present











#### The LAIR Research Overview



Modeling, Simulation, and Data Analysis



**CubeSats for Space Science** 



Instrumentation

# Ionosphere Lectures: Goals

- Understand basic physics of the Earth's ionosphere
  - Origin, composition, layers
  - Variations: diurnal, seasonal, solar cycle, plus other anomalies
- Effects of the lonosphere on Spacecraft and technology
  - Radio communications and GPS

#### Origin of the lonosphere

The lonosphere is a product of two regions: the Sun and the Atmosphere







#### **Troposphere:**

- · Energy sources:
  - Planetary surface absorption (IR, visible), convection & conduction to atmosphere
  - Atmospheric absorption of terrestrial and solar IR
  - Latent heat release by H<sub>2</sub>O
- Energy sinks:
  - IR radiation
  - Evaporation of H<sub>2</sub>O

#### Thermosphere:

- Energy sources:
  - Absorption of EUV (20-100 nm; photoionizing O, O<sub>2</sub>, N<sub>2</sub>) and UV (120-200 nm), photodissociating O<sub>2</sub>), leading to chemical reactions and particle collisions, liberating energy
  - · Joule heating by auroral electrical currents
  - Particle precipitation from the magnetosphere
  - Dissipation of upward propagating waves (tides, planetary waves, gravity waves)
- Energy sinks:
  - •Thermal conduction into the mesosphere, where energy is radiated by CO<sub>2</sub>, O<sub>3</sub> and H<sub>2</sub>O
  - IR radiation by CO<sub>2</sub> NO, O

#### Mesosphere:

- Energy sources:
  - Some UV absorption by O<sub>3</sub> (lower heights)
  - Heat transport down from thermosphere (minor, upper heights only)
  - Chemical heating
- Energy sinks:
  - IR radiation by CO<sub>2</sub> H<sub>2</sub>O, OH

#### Stratosphere:

- Energy sources:
  - Strong absorption of UV by ozone (causing stratopause temperature peak)
- Energy sinks:
  - IR radiation by O<sub>3</sub>, CO<sub>2</sub>, H<sub>2</sub>O

#### **Ionization thresholds**

- Require a minimum energy to free an electron from an atom or molecule
- Require a photon with at least this minimum energy: "ionizing radiation" or sometimes just "radiation"
- lonization cross section provides energy-dependent picture of ionization probability





|           | Ionization Energy | Minimum photon wavelength |
|-----------|-------------------|---------------------------|
| Н         | 13.6 eV           | 91 nm (910 A)             |
| He        | 24.6 eV           | 50 nm                     |
| 0         | 13.62 eV          | 91 nm                     |
| Ar        | 15.76 eV          | 79 nm                     |
| N2        | 15.6 eV           | 80 nm '                   |
| <b>O2</b> | 12.1 eV           | 103 nm                    |

#### Earth's lonosphere



 Right: ionization density changes by 100x day vs night, and 10x or more with solar cycle Ionosphere altitudes and layers have a lot to do with where solar radiation is absorbed!



## **Ionosphere Composition and Density**



#### Why does the lonosphere have a peak at some altitude?

The atmosphere is exponentially increasing all the way to the ground.
What about the ionosphere?

$$JI = -\sigma h(h)Idh$$

$$= \sigma h(z)Idz sec X$$

$$I(z) = I_{\sigma}e^{-\int_{\alpha}^{z} n(z)\sigma sec X dz}$$

$$I(z) = N_{\sigma}e^{-\frac{z}{H}}$$

$$I(z) = I_{\sigma}e^{-\frac{1}{2}H}$$





$$I(z, \lambda, \chi) = I_{\infty}(\lambda) \exp\left[-\int_{\alpha}^{\lambda} \sum_{i} N_{i}(z) \sigma_{i}(\lambda) \sec \chi dz\right]$$

$$= I_{\infty}(\lambda) e^{-T(z, \lambda, \chi)}$$

#### **Chapman Layer**

Janization Production Rate, P (G), pairs/
$$n^3$$
/sec

 $P = I(z, \lambda, \chi) \cdot n(z) \cdot \sigma \cdot \eta_i$ 
 $\sigma_i (cn^2)$ , ioniz. cross section

 $\rho_i = I_{\infty} e^{-2i/H}$ 
 $\rho_i = I_{\infty} e^{-2i/H}$ 

#### **Chapman Layer**

- Production higher, and lower in altitude, for lower zenith angle (i.e. noon)
- Peak in production is near where intensity is about half the incident value

$$Z_{\text{nors}} = H \ln \left( n_0 \sigma H \operatorname{sec} \chi \right)$$
 $P_{\text{nors}} = \eta_i \frac{I_{\infty}}{H} \cos \chi e^{-1}$ 





### **Ionospheric Chemistry**

- Ionosphere is in equilibrium when ionization production and loss mechanisms balance
  - \* Production: photoionization; energetic particle precipitation; collisions
  - \* Loss: recombination; charge exchange; chemistry ; transport

$$\frac{dn_e}{dt} = P - L$$

$$P: O + V \rightarrow O^{\dagger} + e^{-\frac{1}{2}}$$

$$At equilibrian, \frac{dn_c}{dt} = 0, P = L$$

$$L = A n_0 + n_e = A n_e^2$$

$$P = L \Rightarrow P = A n_e^2 \Rightarrow n_e = \sqrt{\frac{P}{A}}$$

#### **Electron Density Profile**

- Balancing production (ionization) with loss (recombination), we get an equilibrium electron (or ion) density below  $N_e = \sqrt{\frac{P}{\alpha}} = \sqrt{\frac{P_{\text{max}}}{\alpha}} \exp\left(0.5(1-z_1 - e^{-z_1})\right)$
- Higher, less dense for increasing zenith angle
  - Reminder: this is for a single species, and single photon wavelength!

$$Z_1 = Z - Z_{\text{max}}$$



#### **Ionosphere Layers**

- Different wavelengths are absorbed at different altitudes, by different species
- I(z) depends on wavelength-dependent absorption for each species
- P(z) depends on wavelength-dependent ionization cross sections for each species
- Right: top white curve is I(z) decay by e<sup>-0.5</sup>;
   middle white curve by e<sup>-1</sup>;
   bottom white curve by e<sup>-1.5</sup>
- Red areas: I(z) is basically I∞
  Black areas: I(z) is basically zero





## **Primary Production / Loss channels**

$$0+v \rightarrow 0^{+} + e^{-}$$

$$0_{1}+v \rightarrow 0_{2}^{+} + e^{-}$$

$$N_{2}+v \rightarrow N_{2}^{+} + e^{-}$$

$$Charge Transfer$$

$$O_{2} + O^{\dagger} \rightarrow O_{2}^{\dagger} + O$$

$$N_{2} + O^{\dagger} \rightarrow N_{2}^{\dagger} + N$$

$$N_{2}^{\dagger} + O \stackrel{k}{\longrightarrow} NO^{\dagger} + N \rightarrow fast$$

#### Recondition

$$O_2^+ + e^- \rightarrow O + O$$
 fast

 $NO^+ + e^- \rightarrow N + O$  post

 $O_2^+ + e^- \rightarrow N + O$  posta. Finally states are stable for the stable fast.

 $O_2^+ + e^- \rightarrow O + O$  fast.

 $O_2^+ + O_2^- \rightarrow O + O$  fast.



#### E-region

Below 150 km, 
$$[O_2] \gg [O]$$
, so E-region dominated by  $O_2 + v \rightarrow O_2^2 + e^2$   
 $O_1^2 + e^2 \rightarrow O + O$   
 $L = \propto N_{O_2} + N_e \simeq \propto N_e^2$   
if  $P = L$ ,  $N_e = \sqrt{P}$ 

also 
$$N_2 + V \rightarrow N_1^{\dagger} + e^{-\frac{1}{2}}$$

$$N_2^{\dagger} + 0 \rightarrow N_0^{\dagger} + N$$

$$N_2^{\dagger} + e^{-\frac{1}{2}} \rightarrow N + 0$$

# F-region (\(\pi\)

O+ 
$$V \rightarrow O^{\dagger} + e^{\dagger}$$

(some  $N_{2}$  ionitation)

O<sup>†</sup> + e<sup>†</sup>  $\rightarrow O$  +  $h_{V}$  is very slow; not dominant

instead

O<sup>†</sup> +  $O_{2} \rightarrow O_{2}^{\dagger} + O$ 

O<sup>†</sup> +  $N_{2} \rightarrow NO^{\dagger} + N$ 

then:

 $A = O_{2}^{\dagger} + e^{\dagger} \rightarrow O + O$ 
 $A = O_{2}^{\dagger} + e^{\dagger} \rightarrow O + O$ 
 $A = O_{2}^{\dagger} + e^{\dagger} \rightarrow O + O$ 
 $A = O_{2}^{\dagger} + e^{\dagger} \rightarrow O + O$ 



# F-region (=2)

0 + hu -> ot + echarge exchange 9++02-3 02+0 OT +N2 -> NG+ +N LOSS = 2, Not Noz = 2, Noz Ne £ XNe other factors \* dynanics: Vertical transport - diffussion A electrostatic forces



## **D-region**

- D-region is known for low electron densities, light and heavy positive and negative ions, and complex chemistry.
- Production:

$$*$$
  $N_2 + \gamma \longrightarrow N_2^+ + e^-$ 

$$O_2 + \gamma - O_2^+ + e^-$$

$$*$$
 NO +  $\gamma$  —> NO<sup>+</sup> + e<sup>-</sup>

Negative ions formed by attachment processes:

$$O_2 + e^- + O_2 \longrightarrow O_2^- + O_2$$

$$O_2 + e^- \longrightarrow O_2^- + \gamma$$

Detachment:

$$O_2^- + \gamma - O_2 + e^-$$

$$O_2^- + O_2 \longrightarrow O_2 + e^- + O_2$$



#### D-region chemistry and "cluster ions"

- ⋄ D-region also contains heavy water cluster ions of the form (H₂O)<sub>n</sub>H<sup>+</sup>
- Requires more complex chemistry models to evaluate ne profiles

#### Sodankyla Ion and Neutral Chemistry (SIC) model:





### **Topside Ionosphere**

 Above ~350 km, densities are so low that ions are not dominated by chemistry, but hydrostatic equilibrium





## **Summary of Layers**

- Layers are dominated by different ions
- Ion densities controlled by balance between production and loss; depends on chemical reactions in each altitude range
- Decay of layers at night depends on recombination rates and densities: low densities at high altitudes mean few collisions



| lonospheric<br>Layer | Altitude<br>Range (km) | Major<br>Constituents               | Notable Characteristics                                                                                               |
|----------------------|------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| D                    | 70–90                  | NO+<br>O <sub>2</sub> + (molecular) | Disappears (recombines) very rapidly-minutes after sundown                                                            |
| E                    | 90–140                 | O <sub>2</sub> + (molecular)<br>NO+ | Recombines rapidly-often disappears before midnight                                                                   |
| F1                   | 140–200                | O+ (atomic)<br>NO+                  | Mostly recombines after sundown, but pockets of ionization may remain                                                 |
| F2                   | 200–400                | O+ (atomic)                         | Persistent because of low collision rates, but density decreases after sundown                                        |
| Topside              | > 400                  | O+ (atomic)<br>H+                   | Merges into the plasmasphere, atomic oxygen dominates at lower altitudes, and hydrogen dominates at higher altitudes. |

#### **Ionosphere Temperatures**

- Below 110 km, temperatures are made equal by collisions
- Above ~110 km, collisions are rare, so each species gets its temperature through different heating processes (radiation absorption, convection, etc)
- Above ~110 km: ions, electrons, and neutrals have different temperatures
  - Remember: this simply means they have different velocity / energy distributions



# Ionosphere Variability

#### **Transport**

- \* A variety of processes move plasma in the ionosphere:
  - Winds: neutral winds drag ions along with them, if collision frequency is high enough
  - Drifts: various forces cause plasma to "drift":
    - electric and magnetic fields;
    - gravity;
    - pressure; etc.
- These contribute to complex spatial and temporal variations in the ionosphere

### Global variation: Snapshots



## Global variation: Snapshots

♦ TEC = Total electron content; integrated in altitude, 1 TECU = 10¹6 el/m²



#### foF2 and hmF2

- \* We often characterize the ionosphere by its peak density, foF2, and the altitude where that occurs, hmF2
- foF2 is a frequency in MHz. related to electron density:

hmF2 is simply altitude in km





#### **Solar Cycle Variation**

- Densities are much higher (order of magnitude) at solar maximum compared to solar minimum
- Higher EUV / X-ray fluxes lead to higher ionization rates





### **Equatorial Electrojet**

- Plasma physics involving B-field lead to an intense current that flows East in the dayside ionosphere
- Restricted to narrow region in latitude; 110-130 km altitude





## Magnetic field





#### **Equatorial Anomaly**

- Due to the EEJ current, an electric field arises
- E x B leads to a drift (known as E x B drift) in the vertical direction
- Plasma rises, but then above some altitude, falls back down along field lines
- \* "Fountain effect"



## **Equatorial Anomaly**



#### Storm-time variability: Gannon Storm 2024

#### TIE-GCM model runs

- Considerably higher TEC at high latitudes: energetic particle precipitation (EPP)
- TEC at low latitudes not significantly different here...
- Equatorial anomaly prominent in evening sector, less so in dawn / noon sector





### Storm-time variability: Gannon Storm 2024

#### TIE-GCM model runs

- Storm associated with increased EUV, X-ray: leads to higher ionization rates
- Higher temperature in the thermosphere raises the entire ionosphere





Run: TIEGCM-Heelis-01\_2024-05-TP-02\_071624\_IT\_1

## Lots more to the lonosphere / Atmosphere system...



# Ionosphere Effects: Radio Wave Propagation

# **Radio Wave Propagation**

- Time for some (more) plasma physics!
  - Plasma oscillations
  - Plasma frequency
  - index of refraction (from Maxwell's equations)
  - Add collisions: absorption
  - MUF, LUF, X-ray effect

#### **Plasma Oscillations**

$$Me \frac{dV}{dt} = Me \frac{d^2x}{dt^2} = -Qe^2 Ne x$$



$$\frac{d^2x}{dt^2} + \frac{qe^2 Ne}{MeEo} x = 0$$

$$We^2$$

$$\frac{d^{2}x}{dt^{2}} + \frac{q_{e} \cdot n_{e}}{m_{e} \cdot \epsilon_{o}} \times = 0 \quad \Longrightarrow \quad \times (t) = A \cos(\omega_{p}t)$$

$$\omega_{p} = \sqrt{\frac{q_{e} \cdot n_{e}}{m_{e} \cdot \epsilon_{o}}} \sim K \sqrt{n_{e}}$$

$$\omega_{p} = \sqrt{\frac{q_{e} \cdot n_{e}}{m_{e} \cdot \epsilon_{o}}} \sim K \sqrt{n_{e}}$$

$$V_p = \frac{c}{n} = \frac{c}{\sqrt{\epsilon_r}}$$
  $\epsilon \left( permittivity \right) = \epsilon_0 \epsilon_r$ 

$$c \left( permittivity \right) = \epsilon_0 \epsilon_r$$

$$c \left( permittivity \right) = \epsilon_0 \epsilon_r$$

$$c \left( permittivity \right) = \epsilon_0 \epsilon_r$$

plasma: 
$$n^2 = 1 - \frac{W^2}{W^2}$$

if  $w \in W_0$ 

at 
$$\omega = \omega_{P}$$
,  $n = 0$   
 $\vee_{P} \rightarrow \infty$ 

$$n = \alpha + j\beta$$

#### **Reflection of EM Waves**

- Plasma frequency ω<sub>p</sub> directly related to electron density
- \* Radio waves above  $\omega_p$  pass through the ionosphere; electrons cannot respond fast enough
- \* Radio waves below  $\omega_p$  are reflected; electrons are "shaken" and re-radiate

#### Implications:

- must use frequencies above ω<sub>p</sub> to talk to satellites
- \* Can communicate over-the-horizon with frequency near / below ω<sub>p</sub>



# Critical Frequencies in the Ionosphere

- ♦ In the F-region,  $f_c \sim 3$ —30 MHz
  - higher frequencies pass through the ionosphere,
     with some refraction
  - over-the-horizon radio
- \* In the E-region,  $f_c \sim 1$ —2 MHz
  - ♦ but sporadic-E increases f<sub>c</sub> up to 100 MHz
- In the D-region, our model breaks.
  - Lots of neutrals means high collision frequency; e √
     our index of refraction is more complicated.
  - Absorption of MHz waves (next)
  - Reflection of waves below ~100 kHz; VLF waves (below ~50 kHz) used for long-range communications with submarines

$$W_{p} = \sqrt{\frac{q^{2}N_{e}}{M_{e}E_{o}}}, \quad F_{p} = \frac{\omega_{p}}{2\pi} \sim N_{e,max}$$

$$\times$$
  $h^2 = 1 - \frac{W^2}{\omega^2} \sim 0$ 



# Index of refraction in a cold plasma

In general, index of refraction is given by the Appleton-Hartree equation:

$$n^{2} = 1 - \frac{X}{1 - iZ} - \frac{\frac{1}{2}Y^{2}\sin^{2}\theta}{\frac{1}{1 - X - iZ}} \pm \frac{1}{1 - X - iZ} \left(\frac{1}{4}Y^{4}\sin^{4}\theta + Y^{2}\cos^{2}\theta \left(1 - X - iZ\right)^{2}\right)^{1/2}$$

$$X = \frac{\omega_{p}^{2}}{\omega^{2}} = \frac{q_{p}^{2} N_{c}}{N_{c} \ell_{w}} \omega^{2}$$

$$Y = \frac{\omega_{c}}{\omega} = \frac{q_{p}^{2} N_{c}}{N_{e} \ell_{w}} \omega^{2}$$

$$Z = \frac{\nu}{\omega} , \quad \nu = \text{coll. fieq} \quad : \quad \text{collisions make in complex}$$

$$N = x + j\beta$$

## **D-region absorption**

- As electrons get excited by waves with f < fc, the collide with neutrals</li>
- Some of the EM wave energy gets transferred to heat; radio waves suffers absorption
- \* How much absorption?

$$\frac{dA}{dl} \left( \frac{dR}{m} \right) = 4.61 \times 10^{5} \frac{\text{NeVen}}{\text{Ven}} \frac{\text{gBo}}{\text{Ne}}$$

$$\frac{dA}{dl} \left( \frac{dR}{m} \right) = 4.61 \times 10^{5} \frac{\text{NeVen}}{\text{Ven}} + \left( \omega \pm \omega_{c} \right)$$

$$\frac{dA}{dl} \left( \frac{dR}{m} \right) = 4.61 \times 10^{5} \frac{\text{NeVen}}{\text{Ven}} + \left( \omega \pm \omega_{c} \right)$$



#### **Collision Frequency?**

- Electrons (few) randomly collide with neutrals (many)
- Radio wave energy converts to <u>electron kinetic energy</u> and then to <u>neutral thermal energy (i.e., neutrals</u> are "heated")
- This is collisional heating, and a sink for radio wave energy

- Collision frequency depends on neutral density (N2, O2) and on electron temperature
- Does not depend on electron density; why?

$$v_{\text{av}}(e, N_2) = 2.33 \times 10^{-17} N_{N_2} (1 - 1.21 \times 10^{-4} T_e) T_e$$

$$v_{\text{av}}(e, O_2) = 1.82 \times 10^{-16} N_{O_2} (1 + 0.036 T_e^{1/2}) T_e^{1/2}$$

$$v_{\text{en}} = v_{\text{av}}(e, N_2) + v_{\text{av}}(e, O_2)$$

$$v_{\text{en}} = v_{\text{av}}(e, N_2) + v_{\text{av}}(e, O_2)$$

# **D-region absorption**

Shown here: absorption of 30 MHz radio wave due to electron precipitation from the radiation belts

Alaska





❖ Riometer: passive instrument that measures D-region absorption by monitoring cosmic noise at ~30 MHz



## Sudden Ionospheric Disturbances (SIDs)

- SID is ionospheric response to a solar flare (X-rays)
  - \* X-rays ionize the D-region, causing a huge increase in D-region electron density (orders of magnitude)
  - \* Higher  $n_e$  leads to higher radio wave absorption
  - Lower D-region reflection height perturbs VLF signals



#### **Short-Wave Fade**

#### Issue for over-the-horizon radar

- There is a maximum frequency we can use, above which waves pass through the F-region
- There is a minimum frequency we can use, because
  - lower frequenciessuffer too much absorption

$$\frac{dA}{dl} = 4.6 \times 10^{-5} \frac{n_e \nu}{\omega^2}$$

- Usable "Frequency Window"
- After a major X-ray flare, Absorption can increase to prevent any useful communication



#### **GPS** and **TEC**

- \* Even for frequencies above  $f_c$ , the ionosphere introduces some interesting effects
  - Small change in index of refraction from
  - Expand in Taylor series:
  - Cut off after first term:
  - Change in path length:
  - Where TEC is total electron content, integrated along signal path

$$n^2 = 1 - \frac{\omega_p^2}{\omega^2}$$

$$n = 1 + \frac{c_2}{f^2} + \frac{c_3}{f^3} + \frac{c_4}{f^4} + \dots$$

$$n = 1 + \frac{c_2}{f^2}$$

$$\Delta l_{\rm iono} = -\frac{40.3}{f^2} TEC$$

TEC = 
$$\int_{\infty}^{\infty} N_{e}(l) dl$$

$$(n^{-2})$$



#### **TEC** maps

- \* 1 TECU =  $10^{16}$  el/m<sup>2</sup>
- receivers all over the Earth's surface;
  20+ satellites to provide pierce-points
- Interpolate results onto 2D (or 3D) map



# **GPS TEC and ionospheric science**

- GPS TEC can be used to observe ionospheric disturbances
- \* "Plume" here, extending over North America, is footprint of plasmasphere "plume" during geomagnetic storm



