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* Kinetic theory -> fluids -> plasmas
* MHD

* A fluid instability: why the solar wind is
supersonic

* MHD waves, spherically polarized Alfven
waves, switchbacks and solar wind turbulence

* MHD invariants and Magnetic Reconnection
as instability




FLUID THEORIES
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When does an ionized gas become a plasma ?
1f2 471. ).
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Saha equation: the ionization of a hydrogen gas is essentially complete at temperatures
of order 10° K, much less than the temperature corresponding to the ionization potential

T~I/k~158x10°K

Also important is that a plasma reaches 90% conductivity with an ionization degree of
only 8%.



Collisions in a plasma
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The collision cross-section will therefore be given by:
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Collisions are also the way through which a plasma thermalizes, 1.e. through which
a plasma containing particle populations with different temperatures reaches thermal
equilibrium. In a collision, energy may be transterred tfrom the particle of higher
energy to the lower energy one. Consider then the case of populations of electrons
and 1ons both out of thermodynamic equilibrium but with comparable energies. It may
be shown that collisions lead to equilibrium among particles ot the same species on a
different timescale compared to that required for thermal equilibrium across species.
For collision between identical particles, the characteristic timescale T required to
reach equilibrium is given by
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Thermal equilibrium across species implies collisions between electrons and 1ons:
in one collision an electron can only lose a fraction of order (m,/m;) of its energy.
Reaching thermal equilibrium therefore requires a time
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1 Fluid Closure: MHD equations
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The relative role of the magnetic field associated forces and
pressure forces is given by the plasma beta
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The MHD equations may be written in conservative form as
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Virial theorem and plasma equilibria

Force tensor
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Multiply by the ith component of x i and integrate over the volume.
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Integrating by parts you obtain
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Surface term can be made to vanish BUT
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A plasma can not be confined by only the self-consistent EM field.
Adding Gravity and kinetic energy one gets
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The surface term is given by




DYNAMICS OF THE INTERPLANETARY GAS
AND MAGNETIC FIELDS*

E. N. PARKER

Enrico Fermi Institute for Nuclear Studies, University of Chicago
Received January 2, 1958

ABSTRACT

We consider the dynamical consequences of Biermann’s suggestion that gas is often streaming out-
ward in all directions from the sun with velocities of the order of S00-1500 km/sec. These velocities of
500 km/sec and more and the interplanetary densities of 500 ions/cm3 (104 gm/sec mass loss from the
sun) follow from the hydrodynamic equations for a 3 X 10¢° K solar corona. It is suggested that the
outward-streaming gas draws out the lines of force of the solar magnetic fields so that near the sun the
field is very nearly in a radial direction. Plasma instabilities are expected to result in the thick shell of
disordered field (1075 gauss) inclosing the inner solar system, whose presence has already been inferred
from cosmic-ray observations.

I. INTRODUCTION

Biermann (1951, 1952, 1957¢) has pointed out that the observed motions of comet
tails would seem to require gas streaming outward from the sun. He suggests that gas
is often flowing radially outward in all directions from the sun with velocities ranging
from 500 to 1500 km/sec; there is no indication that the gas ever has any inward motion.
Biermann infers densities at the orbit of earth ranging from 500 hydrogen atoms/cm?
on magnetically quiet days to perhaps 10°/cm? during geomagnetic storms (Unsold and
Chapman 1949). The mass loss to the sun is 104-10% gm/sec. It is the purpose of this
paper to explore some of the grosser dynamic consequences of Biermann’s conclusions.

For instance, we should like to understand what mechanism at the sun might con-
ceivably be responsible for blowing away the required 10**-10' gm of hydrogen each

cornnd writh sralarttieoe nf +he ardar Af 1000 v /cer Al bnoavwn mechanicme c1ich ac



How does a hot corona expand?

g = GMg . R Op  2mpngR;
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p(r) =poexp(— /1 dr' = )

T (1) falls slower than 1 /1 a finite pressure at infinity is required confine
atmosphere. In a hot plasma atmosphere thermal conduction is

proportional k ~ T°/? and therefore T(r) ~ r=2/7

p = 2nkT

‘Since we know of no general pressure at infinity which could balance the p() com-
puted from equation (9) with the expected values of #, we conclude that probably it 1s
not possible for the solar corona, or, indeed, perhaps the atmosphere of any star, to be in

complete hydrostatic ethbnum out to large distances. We expect always to find some Parker. 1958
continued outward hydrodynamic expansion of gas—without considering the evapora- ’

tion from the high-velocity tail of the Maxwellian distribution (Spitzer 1947; van de
Hulst 1953).
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Mestel, quoted in Roberts and Soward (1972): “were the P,
temperature at the base of the solar corona 10° K rather than the "=
generally accepted 10° K the total pressure far from the sun would Stellar winds and breezes

suffice to suppress the solar wind entirely ” By P. H. Rosuurst
Advanced Study Program, National Center for Atmospheric Research,}
Boulder, Colorado, US.A.

AND A M. SOwARDT
Cooperative Institute for Research in Environmental Sciences,§

P..., = 1.24 10 -?dyne/cm? confines a 10° K corona Eoulder, Colorado, U5.4.

(Communicated by K. Stewartson F.R.S. — Received 13 September 1971 —

Astronomer and astrophysicist who inspired generations of Revised 10 January 1972)

students and discovered the cooling law for white dwarf stars Steady stellar winds are generally divided into two olasses: (i) the winds proper, for which

the energy flux per unit solid angle, ¥, is non-zero, and (i) the breezes, for which B = 0.

The breezes may be distinguished from one ancther by the value of the ratio, g, of kinetie
to thermal energy of the particles in the limit of large distance, v, from the stellar centre, or
more precisely by

= lim =~ .
g="1n T

where v{r) is bresze velomty, Tr) 15 temperature, m iz mean partiele mass, and k is the
Boltzmann constant. Solutions have previously been obtained for values of g in the range
0 = g < 1, in which the breezes are subsonie everywhere with respect to the isothermal
speed of sound, It 18 demonstrated here that two distinet solutions exist as g-+ §, namely
(in an obvious notation) the g = £— and the § = §+ poesbilities. It is shown that, if
g = %{g < #)thesclutions are everywhere supersonie (subsonic) with respect to the adiabatic
speed of sound. If 1 < g < §, they possess a eritical point, at which the isothermal spead of
sound and the flow speed coineide.

The winds are examined in the limit K, —» 0, and the relation with the breezes is studied.
In partieular, it is shown that, for v = O{E_%%), the winds satisfy the stellar breeze squations
to leading order, and possesa g onitical point at v = (1), For r > O(E_*"), the solutions do
not obey the breeze equations, They ultimately follow the Durney asymptotio law [T = O(r—13),
for v — oo for the winds. This demonstration of how the winds merge eontinuously into the
breezes as K, — 0 is new,

The question of how the particle density (&) and temperature {T,) at the base of the
gtellar aorona determine the type of solution realized outside the star is examined. Even when
the flow speed, w,, at the base of the sorona is subgonis, non-uniqueness can ocoeur. In one
domam of the (N7} plane, two distinet types of breeze are possible; in another
these, together with a wind (£, & 0), are permuissible. Elsewhere (large N, moderate 1)
only a unigue breeze exists or (small Ny and/or T) a unique wind. In some domains (large T',)

’ no steady solution exists, unless the requirement that the corona is subsonie is relaxed. In
0 Leon Mestel found that white dwarf stars - dead stars that are the endpoint of evolution of this ease, however, the problems of non-uniqueness are severely ageravated,

stars such as the sun - cooled over billions of years. Photograph: Cath Forrest

T Now at School of Mathematics, University of Neweaatle upon Tyne.

T The National Center for Atmospheric Besearch 1 sponsored by the National Science
Foundation.

§ National Oceanic and Atmospheric Adminstration|University of Colorado.



Stationary, spherically symmetric flows, isothermal
approximation, sound speed c, y=1 (r = R/R )
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Introducing the Mach number M = U/c
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Pressure as a function of distance from the star
- 2 2 2
p=p,exp(M;—M")/2—gR /c”)
Goes to zero for transonic, for breezes varies from:
Puw = Po€Xp(=gR,/c*)  STATIC

p..=p,exp(M./2—gR /c*)CRITICAL BR.EEZE (upward + downward
transonic)




Among flows which are subsonic at the atmospheric base the accelerating transonic has
the special property that density and pressure tend to zero at large distances: because of
the small but finite values of the pressure of the ambient external medium a terminal
shock transition connecting to the lower branch of the double valued solutions filling
region Il will in general be present (McCrea 1956, Holzer and Axford 1970)




Shock position is determined by the pressure at infinity via the
jump conditions.

For given base values of the pressure, the position of the
shock is uniquely determined by the pressure of the
interstellar medium, and the distance from the critical point
to the shock decreases as the pressure increases.



As p_.increases the shock moves in (obvious + algebra is simple).
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SO for intermediate pressures at infinity

. . Pstat S Poo S Perit
there are two solutions: a wind and a breeze.

Multiple solutions often mean INSTABILITY . Are breezes REALLY STABLE?

vy =0Ulctdplpc’

y =y (r)exp(-i(w+ W)t)
(M+1) —i(w+iY)y" +— (y +y )jj\\i (M +1)=0
Look for solutions with vanishing pressure perturbations at

R, and infinity




For waves in a flowing medium one defines the
conserved WAVE ACTION (not energy: waves do work on flow)

(M —1)°
M

2
M +1
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However instabilities may change the wave action (extract
energy from the flow) so equation looks like this:
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Integrating this equation between 1 and r and imposing the
boundary condition that the pressure perturbation vanish (i.e. y*
= y') both at the solar surface and at great distances, we find

2(|y+|5 — |’y+|§)

[ dr M=t {(M 4+ 1)yt ]2 — (M = 1)y |2

"}/:

But the asymptotics for breezes is obvious.....
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Boundary conditions are satisfied amplitudes tend to zero at great
distances, and BREEZES ARE UNSTABLE Growth rate as a function of
Base Mach Number
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Why are breezes UNSTABLE? Wait a minute, let 's look back at the
asymptotic pressures ......

Poo = Poexp(M§/2 — g/c*)

So pressure at infinity INCREASES with INCREASING BASE MACH
NUMBER......

If you have a static atmosphere and increase pressure at infty, you
would expect flow to GO IN, NOT OUT — Bondi, 1952



ON SPHERICALLY SYMMETRICAL ACCRETION

H. Bond:

(Received 1951 October 3)

Summary

The special accretion problem is investigated in which the motion is
steady and spherically symmetrical, the gas being at rest at mﬁmty The
pressure is taken to be proportional to a power of the density. It is found
that the accretion rate is proportional to the square of the mass of the star
and to the density of the gas at infinity, and varies inversely with the cube
of the velocity of sound in the gas at infinity. The factor of proportionality
is not determined by the steady-state equations, though it is confined within

certain limits. Arguments are given suggesting that the case physically
most likely to occur is that with the maximum rate of accretion.
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SHOCK WAVES IN STEADY RADIAL MOTION UNDER GRAVITY*
W. H. McCrea

Berkeley Astronomical Department, University of Californiaf
Received May 7, 1956

ABSTRACT

In the steady radial flow of a polytropic gas toward a center of gravitational attraction, it is shown that
a standing shock wave can, in general, exist within a certain distance of the center. This possibility eluci-
dates certain features of Bondi’s investigation of such radial motion and, in particular, helps to resolve
an indeterminacy which he had noted Reasons are given for concluding that the phenomenon may have
application to accretion by a binary star.

I. INTRODUCTION

The steady spherically symmetric motion of a gas toward a center of gravitational
attraction has been studied by Bondi (1952). The main purpose of the present work is
to show that a standing spherical shock wave may occur in such motion. If it does, the
motion on the supersonic side is given by a particular solution discovered by Bondi, while
the motion on the subsonic side is given by one of a set of solutions which he found but
which had appeared to be without physical significance. In this and other ways the work
assists in the interpretation of Bondi’s investigation.

VIII. NUMERICAL ILLUSTRATION

In order to illustrate the hydrodynamical theory for a value of v in the range 1 < v <
2, it is convenient to use v = Z. This value was also used by Bondji, and Figure 1 repro-
duces some features of Bondi’s Figure 2, though the present calculations have been done
afresh.

log‘ou
|

logmx

F1c. 1.—Example of motion with shock wave, v = £. A4, A*4*, solution of equation (8 1) for x = §;
BB, B'B’, solution for k = 2.77; DEFG, motion with shock EF; LFK, values of u, corresponding to #
given by AEK; and CC, C'C’, solution for k = 4. Abscissa logio ; ordinate logio %.



As p..increases above p_.. What HAPPENS ??? Can’t go to
BREEZES (p..< p_,;; and they’re unstable ANYWAY)




Parker to Bondi
And back. Hysteresis
cycle (Velli, 1994)

Solves inconsistencies in
numerical simulations

Galactic fountains
Supergiant and stellar winds




2.0 Numerical simulation: Del Zanna et al. 1998
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MHD WAVES — SLOW, FAST AND ALFVEN
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. Friedrichs Diagram in Cartesian Velocity Space (B=0.8
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Assuming p, B?/2u, = const and the velocity is full incompresible
V -u = 0, the MHD equations reduces to:

E:VX(?}XB)
[a—ﬁ—l—(ﬁ V)ﬁ]——v +i(V><}§)><E
7| ot P (1)
B? 1 = ﬂ
:—V(p—l——)—l-—(B-V)B
R 200 ) Ho
This can be further reduced to:
%—szx(ﬁxﬁ)
—4(V-B)—B(V-i)+ (B-V)i— (i-V)B (2)
-0 -0
ou 1 - .
— = —(uv-V)u+ —(B-V)B
o = (@ V)it ——(B-V)

Now we can rewrite & = ug + u1; and B = By + Bj, and in Alfvén units,

the magnetic fields can be rewritten as: b= Eo -+ 31, where b = E/.,/p,gp.
The equations above now reduces to:

P GVt (V)
ot (3)
8& — —




and then:

% — — (11 - V)t — (o - V)1 + (b - V)by + (by - V)by 5
85_? = (bo - V)iiy + (By - V)iiy — (s - V)by — (dho - V)by
Now obviously there are two solutions to this system:
iy = +b (6)
We may now apply the outward propagating solution: u; = —51, the
equations simply reduces to:
%B] + | (B0 + o) - VB = 0 (7)

This is the Spherically Polarized Alfvén Wave. However, the choice of gg IS

arbitrary. The most natural choice is to choose Sg and 4 such that
(gﬁ = (0 and <’l_£1> = 0.

However, we can make another choice such that E‘E, = |§\B@ = Eg + Agg.
In this case, the perterbation b, = 51 — Agg. The velocity perturbation
now becomes: u} = —3”1 — —by + Aby, and therefore the new
background speed 4, = 1y — Aby, such that (u) = ug. Consequently, the
new group velocity:

By + tip = bo + o (8)

remains the same. Therefore, the choice of gg and u is actually arbitrary
so long as 51 = —U;.







Switchback Patches
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Creating Switchbacks

U

v(y) = vo + vy sin(27y/\y)

w= (B./B,)\./7

Ay >w  dv/dy ~ const
r=r+ SY

s = t(dv/dy)

B,(r,y) = By(r — sy), B,(r,y) = B.(r — sy)

r~ Y Y T Y ' r Y r T T .2 Y r T T Y r" T 1

B (r,y) = B, + sB | cos(r — sy)




Fast waves, low beta

2 — 122 (\

w? = (kj + k)Ve ] 2 /ﬂ
wQ/VCLQ(;)— k}% — kz j
&

w? V2 >> k7

Total reflection occurs where

w? V= — ki = k’i <0




Alfvén waves in an inhomogeneous medium:
gradients along the field

7= =vEb/\/4rp

aZ: — T — L 1 T — _
5 TV, Vz© F7z VVQ__Z(Z z7)V -V, =0
Energy flux is conserved along the field
dV, v 1 Vadp _ 1vap,
dy 2 p dy 2 p

ST —ST =8,

S:

7T

2/8,



Equations become

k=w/V, k/k=-V,/V,

7T — p1/4Z::
1k
+7 _—zkz“:O

7z Fikz—
Propagation vs reflection is determined by

e, = |k'/2k%] = |V /2w

Never total reflection.



Waves and Turbulence in the Solar Wind

Elssaser variables Alfven speed
/B B
z— =0U + V —
Vamp T VA
5 convection reflection &shear reflection & expansion
7= N 1
By | (U:Va)'VZ = —Z 'V(U::Va)—|-§(2_ _Z'I')V. (Va -+ U/Q)
1 - _
——VP—zT - VzT+ < zT - Vz= >41pTV?zT
P
nonlinearity dissipation

Both nonlinearities and expansion effects (inhomogeneity) are crucial

Turbulence in the solar wind is a multi-scale problem: must resolve scales from ~1AU down to at
least 10° AU — incredibly challenging for computation



O(0) Alfvén wave model

V-V,S=0V,=U+YV,

1 [Z7]° — k(V.) k= 20
S = 5P, v (Va) U+ V,
(U + V)3
2 __ ( a 7~ 2 — K
oUR? = M 0V Z™ |
Close to the Sun U<<V _a far from the Sun U>>V A
V. U

(2)olZ73 2 () wlZ T
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Magnetic Reconnection and the Tearing Instability

Ohm’s law
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Let us now carry out a dimensional analysis by dividing all terms in color with the first term (a
generic field ) The frequency is defined as the inverse of the characteristic time scale and we
define the sound speed !
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il : lj: (w/wm) (gei/wpel(c/b{):/:ng/wp(g)gwce/wp;) (c/ZJ)Q/ :
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The electron plasma frequency, electron and proton cyclotron frequency and the collsion frequencies also appear. It follows that to
neglect the terms in color boxes we require, for the inertial term in green:

4 N

(w/wpe) <L U/c

For the hall term proportional to ~ -
4 2 N
— — 2
J x B \ (wwce/wpe> < (Z/{/c) /
This may also be written differently, taking into account that the Hall term may also be written in terms of the proton
cyclotron frequency and the Alfven

- ™
1 /> = c emy B 1w Vo2 oW 2 2
K[enec (J . B)Z}ZE e nem, U2 wcz-(U) - Wei < (Va) }

While the electron pressure gradient term may be eliminated when

p

\(w/wcp> < (Z/{/c) 2 j




Alfven Theorem: magnetic flux through a closed line which moves
with the fluid is constant in time.
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Magnetic Helicity: In ideal MHD the helicity density integral
along any closed field line is conserved.
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Minimum energy at constant helicity: Force-free
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If resistivity is included, one can show that the Total Helicity must be
dissipated at a rate which is much lower than the total energy. From
definitions:

H = /A B d°r ﬁ:—Q/nCJ-BdST
dt y
By = / —d3 dt —/‘;773

Apply now the Schwarz inequality ( / J-Bdr)’ < / 3243 / B2d3r
vV vV vV

To obtain

dH dEM k = 2cV 8
— k E

dt | S \/ﬁ\/ dat M

This implies that in the presence of turbulence or reconnection (finite energy
dissipation with vanishingly smallm — O total helicity CAN NOT be dissipated.




Alfven Theorem: magnetic flux through a closed line which moves with the fluid
is constant in time. Resistivity breaks the Alfven theorem leading to possible
energy dissipation and relaxation.

Energy minimum (Woltjer) Relaxation (Taylor) -> Force-free states
Astrophysical Applications: Coronal heating, Magnetic structure of the
solar corona. But how?



Solar Corona: from Flares and CMEs to Heating

Flare: Rapid energy release Coronal
Heating: Integrated Rapid Energy Release
(1 Large Flare = 100 hrs of heating on 1

Active region)

E ~10%%erg £~ 10°-10%cm 7 < 1600s



Original Stationary Reconnection Scenario

“Stationary, driven” Sweet-Parker reconnection of a current sheet (and its extensions, e.g., the

Petschek model)
0/ = S~1/2 \g__ \/\{P*
/ e
1/2

> >
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> >
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- — Typical timescale of energy release is 3-30 years!

“The observational and theoretical difficulties with the hypothesis of magnetic-field line
annihilation suggest that other alternatives for the flare must be explored.” E. Parker, 1963



 “Spontaneous” reconnection as the outcome of an internal instability,
namely, the tearing mode instability [Furth et al. 1963] on the HARRIS
SHEET

By(y) = Botanh (E) i

a
Harris current sheet ED (y) — Bﬂtﬂﬂ,h (E) E —+ B[:,Sﬂﬂh (E) ;:
| a a
— Bo TaA +— . S = .
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The Tearing Instability: Linearized Equations
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Tearing Mode Instability SUMMARY
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Tearing Mode Instabllity : old and new

Earth Planets Space, 53, 473-482, 2001

Magnetic Reconnection
in Plasmas

Plasmoid-induced-reconnection and fractal reconnection

Kazunari Shibata! and Syuniti Tanuma?

Dieter Biskamp

1 . . .
Max-Planck-Institute for Plasma Physics, Garching Kwasan Observatory, Kyoto University, Yamashina, Kyoto 607-8471, Japan

2STE Laboratory, Nagoya University, Toyokawa, Aichi 442-8507, Japan

(Received June 28, 2000; Revised November 10, 2000; Accepted February 28, 2001)

As a key to undertanding the basic mechanism for fast reconnection in solar flares, plasmoid-induced-
reconnection and fractal reconnection are proposed and examined. We first briefly summarize recent solar ob-
servations that give us hints on the role of plasmoid (flux rope) ejections in flare energy release. We then discuss
the plasmoid-induced-reconnection model, which is an extention of the classical two-ribbon-flare model which
we refer to as the CSHKP model. An essential ingredient of the new model is the formation and ejection of a
plasmoid which play an essential role in the storage of magnetic energy (by inhibiting reconnection) and the in-
duction of a strong inflow into reconnection region. Using a simple analytical model, we show that the plasmoid
ejection and acceleration are closely coupled with the reconnection process, leading to a nonlinear instability for
the whole dynamics that determines the macroscopic reconnection rate uniquely. Next we show that the current
sheet tends to have a fractal structure via the following process path: tearing = sheet thinning = Sweet-Parker
sheet = secondary tearing = further sheet thinning = ---. These processes occur repeatedly at smaller scales
until a microscopic plasma scale (either the ion Larmor radius or the ion inertial length) is reached where anomalous
resistivity or collisionless reconnection can occur. The current sheet eventually has a fractal structure with many
plasmoids (magnetic islands) of different sizes. When these plasmoids are ejected out of the current sheets, fast
reconnection occurs at various different scales in a highly time dependent manner. Finally, a scenario is presented
for fast reconnection in the solar corona on the basis of above plasmoid-induced-reconnection in a fractal current
sheet.



The “plasmoid chain instability” of Sweet-Parker current sheets

Biskamp (1993) first showed that thin Sweet-Parker current sheets are Tearing

unstable for an aspect ratio a/L<10 (sonnerup and Sakai 1981)

With a proper renormalization of Alfvén time and Lundquist # to the macroscopic
length L, the maximum growth rate scales as S¥4 [Loureiro et al., 2007+]

Alfvén time and Lundquist #: 74 = L/vy4.

(8%) = L/(van)

T4 =~1ha/L ~ S™Y? := (§*)"/2(a/L)1/?

Sweet-Parker: a/L = (S*)_1/2

YA ~ (SF)1*

PARADOX !

In nature, Sweet-Parker current sheets cannot be formed in the first place!
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RECONNECTION OF QUASI-SINGULAR CURRENT SHEETS: THE “IDEAL” TEARING MODE

FuLviA Pucct'? AND MARCO VELLI?

I Dipartimento di Fisica e Astronomia, Universita degli Studi, Firenze, Italy; fulvia.pucci87@ gmail.com

2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; mvelli @jpl.nasa.gov
Received 2013 October 30; accepted 2013 November 23; published 2013 December 16

ABSTRACT

A strong indication that fast reconnection regimes exist within resistive magnetohydrodynamics was given by the
proof that the Sweet—Parker current sheet, maintained by a flow field with an appropriate inflow—outflow structure,
could be unstable to a reconnecting instability which grows without bound as the Lundquist number, S, tends to
infinity. The requirement of a minimum value for S in order for the plasmoid instability to kick in does little to
resolve the paradoxical nature of the result. Here we argue against the realizability of Sweet—Parker current sheets
in astrophysical plasmas with very large S by showing that an “ideal” tearing mode takes over before current sheets
reach such a thickness. While the Sweet—Parker current sheet thickness scales as ~S~!/2, the tearing mode becomes
effectively ideal when a current sheet collapses to a thickness of the order of ~S~? up to 100 times thicker than
S~1/2 when (as happens in many astrophysical environments) S is as large as 10'?. Such a sheet, while still diffusing
over a very long time, 1S unstable to a tearing mode with multiple x-points: here we detail the characteristics of
the instability and discuss how it may help solve the flare trigger problem and effectively initiate the turbulent
disruption of the sheet.

Key words: magnetic reconnection — magnetohydrodynamics (MHD) — Sun: corona



“Ideal” Tearing mode in Thin Sheets

Sweet-Parker current sheets have a growth rate which
diverges in the ideal limit S>>1

CONJECTURE: there is a critical aspect ratio L/a at which the
growth rate does not depend on S. As such, that aspect ratio

provides an upper limit to current sheets that can be formed
in nature [Pucci and Velli APJL 2014]

width: a, length: L
Alfvén time and Lundquist #: 745 = L/vs, (S*) = L/(van)

Max growth rate: v7% ~ (S*)"Y2(L/a)3/?



Self-similar evolution and recurrent collapse
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“Ideal tearing” and recursive collapse

_0000 """"" T T T R I e e
—-0.001
—-0.002
_ -0.003 ‘,
- —0.004 £ ~0-001 - ”
| — t=18t,
—0.005 £ -0.003} ' — t=19r,
—~0.006 £ _p 005 | — t=19.81,
0.007 —0.03  0.00 0.03
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

y/L

Evidence of “recursive” tearing mode-like instabilities during the
nonlinear stage of a primary tearing mode within a Harris current
sheet. New plasmoids appear to be generated, at each nth step,
within smaller and smaller current sheets (CS), that consistently
correspond to the inner layer of the (n-1)th unstable CS.

Tenerani et al. 2015b, ApJ inspired by Shibata&Tanuma 2001 | | | /L
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Flux ropes in the Heliospheric current sheet
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In view of the progress in understanding the physical processes in the reconnection

region, reduced equations or fully phenomenological models should allow more

realistic global simulations in full 3 dimen-sional geometry, which will be the main

task in the future.

Here the magnetic activity in the solar corona is a particularly attractive

"playground”, where one can use, or at least be stimulated by, the stunning obser-

vational data from recent satellite missions such as TRACE.

Finally, a word of caution. In spite of the recent advances, the feeling of mastering,
after so many years, this scintillating subject called magnetic reconnection might

again turn out to be elusive.

Biskamp, 2000 As the images unwind
Like the circles that you find
In the windmills of your mind....
Like a carousel that’s turning running rings around the moon
(A. & M. Bergman)
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