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Postdoc, Space Sciences Lab, UC Berkeley 2014-2016

Research Scientist, NASA Goddard Space Flight Center,2016-2020
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MAGNETOSPHERES

What are they!?
What do they look like?

How do they behave?

How do we know any of this?

(something we should ask ourselves all the
time, about any information presented to us!)
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A FEW NOTES:

Please interrupt at any point with questions, comments,
additions from your own research or experience

My hope is you'll learn as much (more?) from each other as
you do from me

Also: Let’s consider common questions or misconceptions
throughout this talk... please speak up if you think of some!




QUICK POLL

What is the primary topic of your research/research interests:

A) Solar/solar wind

B) Earth’s magnetosphere

C) Earth’s ionosphere/atmosphere
D) Other planetary systems

E) Other/not sure



WHAT IS A MAGNETOSPHERE?

Photons

The volume of space from which the solar wind is
excluded by a planet’s magnetic field, formed by the
interaction of a flowing plasma with a magnetized body




WHAT IS A MAGNETOSPHERE?

Any caveats/modifications we
should make to this definition?

Particles

The volume of space from which the solar wind is
excluded by a planet’s magnetic field, formed by the
interaction of a flowing plasma with a magnetized body




EARTH’S MAGNETOSPHERE

The inner field:

* Originates in a dynamo process inside the Earth’s core
* Close to the surface described by as a dipole or a
multipole

*Variable in magnitude and direction: polarity reversals
approximately all 500 000 years.

Photons
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Particles

The outer field:

* Originates in current systems in the ionosphere and
magnetosphere, driven by the solar wind flow

* Blunted on the sunward (“day”) side, long extended tail
on the anti-sunward (“night”) side
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EARTH’S MAGNETOSPHERE

The inner field:

* Originates in a dynamo process inside the Earth’s core
* Close to the surface described by as a dipole or a
multipole

*Variable in magnitude and direction: polarity reversals
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The outer field:

* Originates in current systems in the ionosphere and
magnetosphere, driven by the solar wind flow

* Blunted on the sunward (“day”) side, long extended tail
on the anti-sunward (“night”) side

Where is the moon in this picture? (and why am | asking?)
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EARTH’S MAGNETOSPHERE

Magnetosheath
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Van Allen Belts

Solar-wind
plasma




EARTH’S MAGNETOSPHERE

R 4 Maanetosheath

Lockwood (2022) Frontiers
“The Joined-up Magnetosphere’

Solar-wind
plasma

Van Allen Belts
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BOW SHOCK -
COLLISIONLESS SHOCKS IN PLASMAS
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BOW SHOCK

COLLISIONLESS SHOCKS IN PLASMAS
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BOW SHOCK -
COLLISIONLESS SHOCKS IN PLASMAS
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BOW SHOCK -
COLLISIONLESS SHOCKS IN PLASMAS
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Earth’s Magnetosheath vs solar wind plasma — denser; hotter, slower

As flow goes around the flank, it: expands, cools, speeds up again
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Notes:
Pristine solar wind is not what is actually directly interacting with the magnetosphere
Sheath is not uniform or boring. Lots of ongoing work into dayside transients and structure/substructure

W N

Credit:Advanced Visualization Lab, National Center for Superco‘m?gu. [ éAprications, University of lllinois, Urbana-Champaign
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Pristine solar wind is not what is actually directly interacting with the magnetosphere
Sheath is not uniform or boring. Lots of ongoing work into dayside transients and structure/substructure
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Notes:

Pristine solar wind is not what is actually directly interacting with the magnetosphere
Sheath is not uniform or boring. Lots of ongoing work into dayside transients and structure/substructure
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NASA’s Magnetospheric Multiscale Mission (MMYS)

X NASA’s THEMIS mission

Credit:Advanced Visualization Lab, National Center for Supercoh‘y ti ghAppI-k;tions, University of lllinois, Urbana-Champaign
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MAGNETOPAUSE

Magnetosheath

e . P e et
A R

Solar-wind
plasma

Van Allen Belts

Total pressure P:
P=pu*+p+B*/2u,

T

Dynamic pressure Magnetic pressure
Thermal pressure



MAGNETOPAUSE

Magnetosheath
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Total pressure P:
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Dynamic pressure Magnetic pressure
Thermal pressure

Solar wind:  Earth’s Magnetosphere:
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How do we know this!?




MAGNETOPAUSE
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Earth’s Magnetosphere

THE BUBBLE ISN’T
EMPTY

Charged particles (plasma \

and high-energy particles)

are trapped in the
magnetosphere
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TRAPPED PLASMA

MAGNETOPAUSE
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Earth’s Magnetosphere
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Earth’s Magnetosphere
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How do we determine magnetospheric plasma origin?
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EARTH’S MAGNETOSPHERE
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Energy: a few eV
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The Atmosphere and lonosphere
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PAUSE... QUESTIONS?




* Particle populations
ranging from eV to MeV

* Waves from mHz to kHz

* System responds on
timescales of seconds to

years

MAGNETOSPHERIC DYNAMICS




Geomagnetic Activity

Geomagnetic Storms: Temporary
(~days) global disturbances of the
Earth’s magnetosphere caused by
conditions in the solar wind

Substorms: Temporary (~hours) more
frequent and localized disturbances
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Geomagnetic Activity

Geomagnetic Storms: Temporary
(~days) global disturbances of the
Earth’s magnetosphere caused by
conditions in the solar wind
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SUN-EARTH SYSTEM
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Eastwood et al., Space Sci. Rev., 2015




NASA’s THEMIS mission



MAGNETOSPHERIC CURRENT SYSTEMS

Expansion Phase Short Circuit of Tail Current

McPherron et al. (1973)




THE AURORA




Why | like aurora (part |)

2022-05-11 02:16:08 LT, at Chautauqua Trail, Boulder, CO, 10s exposure

Credit: Longzhi Gan; Boulder CO May 2024




Why | like aurora (part Il)

Auroral Onset

Adapted from Akasofu
(Planetary and Space Sciences, 1964)
886—1578 citations




Why | like aurora (part Ill)

NASA’s Juno mission

Aurora at Jupiter

Io footprint Polar aurora

X

Main auroral oval Ganylnede and Ellropa
footprints




Why | like aurora (part Ill)

Aurora at Mars

Diffuse Aurora Discrete Aurora Proton Aurora

During strong space weather During solar storms, faint Solar wind protons penetrating
events, global aurora can emissions (white arrows) cluster Mar’s atmosphere emit Lyman

engulf the planet, as in this around remanent magnetic fields ~ Alpha photons around the limb,
image from September 2018 locked in regions of Mars’ crust adding to Mars’ coronal glow

Three types of aurora on Mars, as observed by the Imaging Auroras on Mars imaged by the Hope orbiter
UltraViolet Spectrograph on MAVEN — Schneider et al. 2019 Emirates Mars Mission




TIMESCALES OF MAGNETOSPHERIC
DYNAMICS
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PAUSE — QUESTIONS?




GROUP EXERCISE




10° 10! 10? -1.75 -1.50 =125 -1.00 -0.75 -0.50
Magnetic Field [nT) Flux-Tube Entropy
[0
©
s
o
)
i
Q.
7))
O
e
()
o
(®))
4]
=
O
(4]
Bursty
Bulk
Flow and—
Magnetic
island
Adapted from Sorathia et al. (2021)




Design a mission to study these meso-scale flows, energy and

mass transport from the tail to the inner magnetosphere

3D Magnetosphere Model

Bursty
Bulk
Flow and—
Magnetic
island

Adapted from Sorathia et al. (2021)




SOME EXISTING MagCon
MISSION CONCEPTS

* MagCon = == a; =
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Cross-Scale INvestigation of Earth's Magnetotail and Aurora

Remote-Sensing
Magnetotail Dynamics
from Low Earth Orbit




2024 HELIO DECADAL SURVEY RECOMMENDATION:
LINKS MISSION
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TAKE-AWAYS

The near-Earth space environment is fascinating both from a pure
physics as well as applied perspective

Shock physics, particle acceleration, magnetic reconnection...

Studying our own magnetosphere can teach us a lot about planetary magnetospheres
and star-planet interactions in general

Earth’s dynamic magnetosphere directly impacts society, ground and space-based assets

The system is complex and interconnected
“system-of-systems” where each component may feed back and influence another

Other star-planet-moon interactions provide a laboratory to learn how different
variables affect the overall system, how well we really understand our own system
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ATMOSPHERIC DENSITY AND SPACECRAFT DRAG
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Daily averaged SAMPEX altitude (red) in the context of the
past 22 years of solar activity shown by the monthly
averaged sunspot number (black). From Baker et al. [2012].
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SpaceX says a geomagnetic storm just
doomed 40 Starlink internet satellites

ATMOSPHERIC DENSITY

m By Tariq Malik published February 08, 2022

The satellites launched on Feb. 3, only to be hit by the storm a day

later.
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A SpaceX Falcon 9 rocket launches 49 Starlink internet satellites into orbit from Pad 39A of NASA's Kennedy
Space Center in Cape Canaveral, Florida on Feb. 3, 2022. (Image credit: SpaceX)
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BEFORE WE LEAVE...

Write down:
|. one thing you found interesting

2. one question about today’s material







False stars in star tracker CCDs
During exposure to
muIti-Meotons

Before After
Before

Solar array power
decrease due to
radiation damage

Surface degradation from radiation

Surface degradation
from atomic oxygen

Single event effects in microelectronics
1101 = 0101

\

Electronics degrade due
to total radiation dose

J

Solar array arc

discharge
Spacecraft components

become radioactive
I XY
a

Electromagnetic pulse from vehicle discharge
(on surface, behind thin shielding, or deep inside)

Induced
Voltage =

Mazur, Fennell, & O’Brien, Proc. 315t AAS
Guidance and Control Conf., vol 131, 2008



SPACE WEATHER IMPACTS
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DUNGEY CYCLE

F .= open magnetic flux

in the polar cap!

@, = dayside
reconnection rate!

@ = nightside
reconnection rate!

dF
T;f: L (0 #0,(1)
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QUICK EXERCISE:
WHY SHOULD = LEARN ABOUT __ ?

E.g. why should a magnetospheric physicist learn about the
ionosphere or sun?

Pick the region seemingly least connected to your own
research and think about how the two might interact or relate
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