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So what is (traditional) Space Weather?

Solar Flares (increased X-ray flux)
Arrives: 8 mins; Duration: 1-2 hrs

., Impacts: D-region ionization, High Frequency (HF)
® radio absorption, geolocation, low-frequency
F ‘ navigation, GPS navigation
hhe”

Coronal Mass Ejections (plasma)
Arrives: 1-3 days; Duration: 1-2 days
Impacts: Drives a geomagnetic storm, satellite
charging, drag, communication, navigation (e.g., GPS),
‘ HF communication, ground induced currents (power
~ outages)

B ' . ’\ Solar Proton Events

-4 (energetic particles)
Arrives: 15 mins to a few
hours; Duration: days
Impacts: Polar HF absorption,
satellite anomalies, radiation
hazard
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Radlo Blackouts

GOES Xeray
peak brightness
by class and by
Hlux®

Number of events when
flux level was met:
{number of storm days)

HF Radio: Complete HF (high frequency®*) radio blackout on the entire sunlit side of the Earth lasting for a pedl] Fewer than 1 per cycle
number of hours. This results in no HF radio contact with mariners and en route aviators in this sector. (2x10°%)
R S | Exweme | Navigation: Low-frequency navigation signals used by maritime and general aviation systems experience outages
on the sunlit side of the Earth for many hours, ing loss in positioning. Increased Ilite navigation errors in
positioning for several hours on the sunlit side of Earth whu:ll may s;m:ad into the night side.
Hf_hdm. HF radio communication blackout on most of the sunlit side of Earth for one to two hours, HF radio Xlo 8 per evele
R4 |sevee | comact lost during this time. (10%) {8 days per cycle)
Navigation: Outages of low-frequency navigation signals cause i d error in p for one to two
hours. Minor disruptions of satellite navigation possible on the sunlit side of Earth.
HF Radio: Wide area blackout of HF radio communication, loss of radio contact for about an hour on sunlit side | X1 175 per evcle
R 3 | Stong of Earth. (10 (140 days per cycle)
y ignals degraded for about an hour.
HF Radm Limited blackout of HF radio communication on sunlit side of the Earth, loss of radio contact for tens | M§ 350 per eyele
R 2 | Moderate of mmutul (5x107) {300 davs per cycle)
HP_Badm. Weak or minor dcgm!almn of HF radio communication on sunlit side of the Earth, occasional loss of | M1 20000 per evele
R 1 | Minor radio contact. (1 (950 davs per cycle)
Navigation: Low-frequency navigation signals degraded for brief intervals.
*  Flux, measured i the 0.1-0.8 nm range, in W-m™ Based on this measure, but other physical nseasures are also considered.
**  Other frequencies may akso be affected by these conditoes.
URL: www.swpe noaa. govNOAAscales April 7, 2011
Flux level of = | Number of events when
Solar Radiation Storms OMEV | e evel was et

particles {ions)*

Biological: unavoidable high radiation hazard to astronauts on EVA (extra-vehicul
crew in high-flying aircraft at high latitudes may be exposed to radiation risk. ***
Satellite operations: satellites may be rendered useless, memory impacts can cause loss of control, may cause

s and

activityl; y

10°

Fewer than | per cycle

SSs Extreme | serious noise in image data, star-trackers may be unable to locate sources: permanent damage to solar panels
ssible.
pOoﬂbcr systems: complete blackout of HF (high frequency) communications possible through the polar regions,
and position errors make navigation eperations extrermely difficult.
BmlnmaL unavoidable radiation hazard 1o on EVA; ¢ and crew in high-flying aircraft at 10* 3 per cyele
high latitudes may be exposed to radiation risk_***
sS4 Severe Satellite operations: may experience memory device problems and noise on imaging systems; star-tracker
problems may cause orientation problems, and mlar panel efficiency can be degraded.
Other systems: blackout of HF radio Iy h the polar regions and i d navigation errors
over several days are likely.
Biological: radiation hazard aveidance recommended for astronauts on EVA; passengers and crew in high-flving | 10 10 per evele
aircraft at high latitudes may be exposed to radiation risk ***
S3 Strong Satellite operations: single-event upsets, noise in imaging systems, and slight reduction of efficiency in solar
panel are likely.
Other svstems: degraded HF radio propagation through the polar regions and navigation position errors likely.
Biological: passengers and crew in high-flying aircraft at high latitudes may be exposed to elevated radiation 10° 25 per eycle
llsk LAl
S 2 | Moderate | Satellite operations: infrequent single-event upsets possible.
Other systems: effects on HF propagation through the polar regions, and navigation at polar cap locations
possibly affected.
Biological: none. 10 50 per eycle
S1 | Miner Satellite operations: none.

Other systems: minor impacts on HF radio in the polar regions.




Drivers of Space Weather in the Upper Atmosphere

Solar flares

Solar Proton Events

Solar Radio Bursts

Geomagnetic storms driven by coronal mass ejections or corotating
interaction regions

e Waves propagating from the lower atmosphere
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Upper Atmosphere Space Weather Impacts on

Operational Systems
e Neutral density

o Satellite drag in low-Earth orbit (LEO): space traffic management, orbit
prediction, conjunction prediction, collision avoidance, re-entry (neutral mass
density, winds, structure, waves)

e lonosphere — impacts radio wave propagation

o HF communications 3 —30 MHz: D-region absorbs signal; F-layer reflects/
refracts signal; structure, gradients, undulations, and tilts scatter signals

o  GNSS precise point positioning, satellite navigation, and timing (PNT; GPS
1575 and 1228 MHz): line of sight total electron content delays and refracts
signals; plasma irregularities, structure and gradients diffract signals, causing
amplitude and phase scintillations and sometime complete loss of signal

o Satellite communications: plasma irregularities cause scintillations and loss of
signal
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lonospheric parameters affecting
radio wave propagation users

D-region flare and polar cap enhancements - HF
absorption incoming oo

1000

800 4 — Sunspot

F-region peak density and bottom-side waves oo mamum N

-— - Sunspot \

and undulations - HF propagation, geo-location ~ _ «+ ™"

Negative phase geomagnetic storms - MUFs 351 200

Positive phase geomagnetic storms — GNSS . ey
range delay and MUF w— i
lonospheric gradients and irregularities — T ety

diffraction and scintillations
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Drivers of Space Weather in the Upper Atmosphere

Solar flares

Solar Proton Events

Solar Radio Bursts

Geomagnetic storms driven by coronal mass ejections or corotating
interaction regions

e Waves propagating from the lower atmosphere
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Solar Flares

Increase in X-ray flux
GOES geostationary satellite measures X-ray flux in 0.1 — 0.8 nm

Neutral atmosphere has small cross-section for X-ray photons
Penetrate deep into the atmosphere, below 100 km altitude

lonize the D-region and absorbs HF radio waves
Flares arrive in 8-minutes " Radiaton

1000 I

Flare duration 1-2 hours 800 e

Users: disaster response (FEMA), ZZ " i f
commercial aviation, coast guard, £
mariners, HF frequency manages,  ~ 1. M
mllltary 100 -

80— Far
uv

T T
10' 10? 10° 10¢ 10° 108
Electron Density (cm)

July 15th, 2020 Heliophysics Summer School



HF Radio Wave Communication A

® For vertical propagation, the radio wave
will reflect when plasma density matches lonosphere
the radio wave frequency

® The peak plasma density (usually NmF2)
determines the maximum frequency for
reflection

® NmF2 (m-3)=1.24x 10'°x foF2 (MHz)

® At an oblique angle, the radio wave

refracts (changws direction) as the waves

encounters denser plasma enabling “Virtual Height”
higher frequencies and communication to
greater distances (e.g., M3000)
® Apparent reflection usually from F2 layer
® Maximum usable frequency (MUF) for a

given angle (skip distance) and NmF2

® Higher frequencies suffer less absorption

® A radio wave blackout only refers to HF
July 15th, 2020 Heliophysics Summer School
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Usable Frequency 1 15
Window >
TR
MUF controlled by F2 8 %
I k density and II'JI:J V10
region pea y o USABLE

angle of propagation

LUF controlled by degree MAXIMUM
of absorption in the D- USEABLE

region

Lower frequencies are more
susceptible to absorption

FREQUENCY
WINDOW

FREQUEN%Y MUE

Large flares can cause a LOWEST
shortwave fade, and can USEABLE U SHORTWAVE
’ FREQUENCY FADE (SWF)

wipe out useable frequency

window
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SWPC D-region absorption product

D-region responds to X-rays in less than a minute 2
HF absorption follows time history of source and requires high cadence ;
. Attenuaotion . | %D
(Maximurn Absorption) .-_:‘
: - T

GOES Xray Flux (5 minute data)  pegin: 2001 apr 14 0000 UTC

107 E 3
10’3; ; <
L wo’f’i £
NG
St e TYANTER N T
10’7; +—1 ; A I \Jh\; l ! ; %T\'
- ' 107? : : 1 §
Highest Frequency Affected by 1dB Absorption Estimoted Recavery Time 0 5101520253035 Apr 14 s e hpr 17
“ ] ] ) T Updated 2001 Apr 16 15:41:04 UTC NOAA/SEC Boulder, CO USA
0 5 10 15 20 25 30
Deqraded Frequency (MHz) +/— 2 MHz .
s fuency (WHz) +/ Driven by GOES X-ray
Moderate X—ray flux Normal Proton Background observations in

Product valid At : 2010-02-12 11:27 UTC NOAA/SWPC Boulder, CO USA . )
geostationary orbit
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Quiz: Why does D-region absorb the radio wave
when it has the lowest density of the ionospheric
layers, compared to the F-region ?

Incoming Solar

1000 Radiation
-
800 4 —— Sunspot ‘\ \
maximum VN
600 — \
-— - Sunspot \
400 — minimum A
£
= 200 i
0=
150 — EUV
100 - -
_ ar
80 v fiv
60 T I T T T NS
10 10? 10° 10¢ 10° 10°

Electron Density (cm™)
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Operator view

Red - 5-day average

July 15th, 2020
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Geodetic Latiude (Deg)

Response to Extreme Ultraviolet (EUV) flare component
Sutton and Forbes

CHAMP Day Time Density (LT -13:20; Height -400 km) x10 ™" 0 GRACE Day Time Density (LT ~16:00; Height ~490 km)
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GOES Xray Flus (5 minute date) g 2001 ser 14 cooo Urc

« EUV heats and ionizes the upper atmosphere (improves HF comms)
* Heating expands atmosphere increasing neutral density in low Earth orbit (LEO)

Watts m™

up to ~50% increase in satellite drag L m
* Neutral density has longer response and recovery time to EUV flare ]Z'ZE ;#1 ik “\m\ |
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Drivers of Space Weather in the Upper Atmosphere

Solar flares

Solar Proton Events

Solar Radio Bursts

Geomagnetic storms driven by coronal mass ejections or corotating
interaction regions

e Waves propagating from the lower atmosphere
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Solar Proton Event

Increase in high energy solar protons directed to polar and high latitude
region by Earth’s magnetic field (open magnetic field)

GOES geostationary satellite measures particle flux in 10 to 100 MeV
(energy range)

Neutral atmosphere has small cross-section for energetic protons
Penetrate deep into the atmosphere <100 km

lonizes the D-region and causes HF radio waves absorption at high
latitudes (same as X-rays)

Solar protons arrive in 15 minutes to a few hours (depending on the
interplanetary magnetic field

Duration several days

Users: disaster response (FEMA), commercial aviation, coast guard,
mariners, HF frequency manages, military

July 15th, 2020 Heliophysics Summer School
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Polar Cap Absorption

high latitude proton flux
cut-off latitudes controlled by Earth’s magnetic field

PROTON FLUX

\ular F’rntnnq ther‘*ﬂd by PCES
§ 10:34 UTC, from NOAA—15

PROTON FLUX
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D-RAP Product for D-region absorption for HF comms.

High Latitude:
driven by observations of GOES
Solar Energetic Particles

. At
(Maxi

10 15 20 25 30 35 / ~ —~ )
Degraded Frequency (MHz) +/— 2 MHz _/ ~ R N L -l OO S S S S S S S
3 \ % 1y [ e

Mid and Low Latitude: Ty
driven by GOES X-rays ‘ * _ '
Solar Flare Observations — s

10 25
Degraded Frequency (MHz) +/— 2 MHz
Elevated X—ray flux Strong Proton Flux
Product Valid At : 2006—12-07 19:50 UTC NOAA/SWPC Boulder, CO USA

Forecast relies on predicting solar flares and solar proton event ‘9
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Polar 1

Polar 2

Polar 3

Polar 4
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above 82N

Polar 2

No HF either

Polar 3

Polar 4




D-region absorption product (DRAP) for HF communication

Auroral absorption:
currently missing

Highest Affected Frequency

10 15 20 25
Degraded Frequency (MHz) +/— 2 MHz

o m 1Fr ton Flux
Pro ( 25 23:13 ( NOAA/SWPC Boulder, CO US

Solar proton event: GOES solar proton flux

22
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Why does D-region absorb the radio wave when it
has the lowest density of the ionospheric layers,
compared to the F-region ?

e As the radio wave propagates through the
medium the free electrons are oscillate with the
wave as it passes through.

In the E and F region the electron collision
frequency is low so the energy stays in the wave
In the D-region below 100 km altitude the dense
atmosphere increases the electron-neutral
collision frequency, so as the wave passes
through some of the wave energy is lost through
electron-neutral collisions

July 15th, 2020
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Drivers of Space Weather in the Upper Atmosphere

Solar flares

Solar Proton Events

Solar Radio Bursts

Geomagnetic storms driven by coronal mass ejections or corotating
interaction regions

e Waves propagating from the lower atmosphere
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Coronal Mass Ejection Striking Earth

Drives a geomagnetic storm at Earth if the interplanetary

magnetic field (IMF) is southward &

Arrival time 1-3 days

Duration 1-2 days

Effects:

Atmospheric heating, expansion and
increased satellite drag

Disruption of HF Communications

Compromised GNSS Positioning, Navigation, and Timing

Induced currents/power outages

Satellite anomalies

Users: power companies, satellite operators, HF operators,'MF l l =

satelite communication, PNT, ..........
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Increase in Magnetospheric Forcing

TIROS/NOAA auroral precipitation Weimer electric field patterns
patterns driven by power index: driven by solar wind data:

lonospheric Electric Potential 06/18/95 6.7 UT
IMF B,= -1.9nT B,= -7.9nT SW Vel= 350.0 km/sec

s

- - -_ + + ++ -+
- - - - + 4+
Penetration E-field from High Latitude Magnetospheric Currents

N

0 Radial Qutward Radial Inward
ExB Drift ExB Drift
12 18 24 06 12
Local Time
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Thermosphere-lonosphere Responses to
Magnetospheric Sources

e Auroral precipitation and magnetospheric convection expanded enhancing
conductivity and plasma transport at high latitudes (scintillations, absorption)
e Magnetospheric “penetration electric fields” imposed globally in less than a
second (plasma reconfiguration at mid and low latitudes, HF comms.,
plasma gradients, irregularities, satellite communications, navigation)

e |on drag drives high latitude wind system up to ~ 1 km/s (drag)

e Joule and particle energy heats atmosphere, thermal expansion, neutral
density increase, winds (drag)

e Horizontal pressure gradients, equatorward wind surges, changes in global
circulation, neutral composition changes (HF comms.)

e Disturbance dynamo electric fields (plasma reconfiguration)

e Positive and negative ionospheric storm phases
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Upper Atmosphere Expansion and Satellite Drag

Effects of the Environment

Photons, Particles, ‘ Satellites and Debris
Electric Fields Graviy Tracking

Solar EUV and WIoSPric Observations
FWiradiance | Il 47 @ L S e e e e e e o
\ 4

Catalog

Solar Wind, EZ?gEOSphenc L gtrgwospheric .Sr?;.eggttg Maintenance,
Magnetosphere, > Y 9 ) ry ; Orbit Prediction
lonosphere Thermospheric Objects

Wind and Satellite Mass,

" | Solar Radiation ’ L }
Total Solar Compos Shape, Material, Collision Avoidance,
Irradiance | Pressure Attitude Reentry Prediction

Neutral density and wind risks to operational spacecraft:
= Direct: drag, changing orbit, orbit uncertainty, decreased orbit
lifetime
= |ndirect: inability to monitor/predict debris trajectories for
collision avoidance



Upper Atmosphere Expansion and Satellite Drag
Effects of the Environment

PhgOns, Tgticles, as Sétellifes énd"De.t.)ris

Tlectric Fields

Lower Tracking

Solar EUV and Atmosphere Gravity Observations
FUV lIrradiance

. . . Catalog
Solar Wind, rirtlosphenc Atmospheric Satellite Y I—

Ther
Magnetosphere, Density Drag Trajectory M_any Orbit Prediction
lonosphere Thermospheric Objects

Wind and - Satellite Mass,
 ~ur— Composi Solar Radiation Shape, Material, Collision Avoidance,

. |
Irradiance Pressure Attitude Reentry Prediction

Main causes of Upper Atmospheric Expansion:
1. Solar UV radiation increase

2. Coronal mass ejections (CMEs) (geomagnetic transient events)




Atmospheric expansion, satellite drag risks

Atmospheric expansion poses two distinct risks to operational
spacecraft:

1. Direct effect of enhanced drag on the spacecraft, changing
its orbit, increases the uncertainty of its position, and reducing
the orbital lifetime.

2. Indirect effect of atmospheric expansion on the ability to
monitor the trajectories of debris, including objects with high
area-to-mass ratio, for collision avoidance.

Neutral density responds to thermospheric heating, density
and temperature are considered synonymous. Density
response depends on atmospheric composition.

Small-scale structure — important for debris with high area-to-
mass ratio and collision avoidance

July 15th, 2020
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& Useful Terminology for Orbital Debris Courtesy Joe Carroll

Tether Applications, Inc

b
Cars Intact objects, mostly ton-class; <1% of all lethal LEO objects
(~3000) 98% of target area & 99% of mass for debris-creating impacts!

;=i Easy to track & avoid, but the source of hubcaps & shrapnel

] ™
xouzow 4 N

-

-

Hubcaps Tracked fragments, mostly >10 cm, <1kg: ~ 2% of lethal objects
(~9,000) Hubcaps dominate tracking costs; most are too light to shred cars
. 44% are from just 2 collisions: Fengyun/A-sat + Cosmos/Iridium

Shrapnel Lethal untracked fragments, ~1 gm: >97% of all lethal objects?
(~500,000?) Too small to track & avoid (now), but too heavy to shield against

"""" This is the expensive (but invisible) direct threat to assets!

We worry mostly about a cascade of hubcap/car collisions in low earth
orbit making more & more hubcaps (Kessler Syndrome). We should
perhaps worry mostly about lethal shrapnel, and the accidental car/car

collisions that will create most of it!



Hotter more expanded
atmosphere — drag significant

Orbit

With o drag up to 1000 km altitude

With drag

Satellite

Drag Region Mass Density

E
=
o
-]
<

Tracked fragments (<1 kg) from two recent
collisions are half of all tracked fragments

Tracked <1 kg LEO "Hubcap" Population per Km Altitude, in February 2011
35

Fengyun/A-sat  (2924)

30
—— Cosmos/Iridium (1756)

------- All other (4425)
——Feb 2011 total  (9105)

25 A

20 A

Courtesy Joe Carroll
Tether Applications, Inc
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1. Larger objects have higher collision risk, and their high mass raises collision yield.
2. Tight altitude clustering of massive large objects further raises their collision risk.
3. Most Iridium satellites can (& will?) maneuver, & may deboost when replaced.

4. Russian rocket bodies are most of the mass in most of the crowded altitude bands.
5. They aren’t the only issue, but they will be the source of most collisional shrapnel.

Tons/Km Mass at 450-1050 km in April 2016 (93% of future shrapnel!) Kosmos-3M

13 s :
12 4| — Total: 1904 tons | | | 2'4X6kn;.’ 434
—- ia: = 66.5° 18 Zenit + 5

11 4 Russia: 1265 tons = 66.5% |l ! 20 T:glllna 5 & at 600-1600
10 4{ ---- US: 239 tons = 12.5% || » | ~=F . km

9 | eeeeees PRC: 199 tons=10.5% ' i | Kosmos=3M:

8 1| — Other: 201 tons =10.5% | | A i 131§ at 2 L

+13 at 662
7_ | | pi Y pp 4 .
6 73 \ 74 R\ Zfllnt
5 _ _ | Iridium| ﬁ / \ 3.9x km
4 /\ Kosmos- & /s | ' 8300 &
1 /I \ 71°

5] /,\,Jrv \ X | \ Tridium
1 /'\f\ - ;7\‘\\ ~2x4x8
0 L L = T m,

450 500 550 600 650 700 750 800 850 900 950 1000 km 550kg, 86°



Neutral density at 400 km [kg/m?]

CTIPe vs CHAMP or GOCE
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Time dependent response: wind
surges, temperature, and density

~20,000 pieces of debris > 5 cm are tracked

latitude

Heliophysics Summer
School
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CHAMP filtered relative density variations (SLT=9.3)

05
80 = == r’} Y
—— - S Ihaly 03
60
L I R e RIS (aP IR 01
-0.1
2 -03
0 i -05
0
0
1340 1344 1348 13 6 136.0

Day-of-year 2005

]
ALT 250km -150.0 -90.0 -30.0 30.0 90.0 150.0
Dif-Southward Wind [m/s]

40
o
g
T 20
)
1
D
133
g
g 0
L33
o
8
i
5 -20
b3
f<3
g
o
-40
0 100 200 300
GEOGRAPHIC LONGITUDE [deg.]
dif strml50_074_15_11M
CTIPe NEUTRAL DENSITY 400km [Kg/m3] 2005-05—15 00:05UT
20
B.34E-012
.
E 6.67E-012
®
%
L 5.01E-012
2
g
1
g
S 3.35E-012
1.68E-012
2.00E-014
o] 30 60 90 120 150 180 210 240 270 300 330
Geographic Longitude
| ——CHAMP . 1
R g— CHAMP satellite
E | vs CTIPe model |
Z 3E012 1
£
£
g
3
F

0 . .
336 338 340 342 344 346 348 350 352 354 356 358 360 362 364 366
DOY [2006]

35



Impulse Joule heating: launches large-scale TIDs,
temperature and density increase

(K]

Model Layer 128 Temperature at 03/17/13 00:00Z

M--u Tacaes - [ESEE] 90° N
e MP-— i e -
B bserved speed: 5;% M TADs detected in filtered
JE0 7 .P ‘( §’;]S)§ M CHAMP data, compared to
. %2 N U CTIPe filtered similarly

15 May 2005
dayside results (LT=9.3)

L |l
| CTIPespeed: 546
L1

~
'\
I/W
¥ w, 4

NB: this is a very good case
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WAM Whole Atmosphere Model Examples: neutral density and 1-day

temperature animation at 240 km

Neutral Atmosphere Component e wmmee wocccne mnee

* Whole atmosphere model (WAM): an
extension of the US weather model
(Global Forecast System GFS spectral
model) to 600 km altitude, 150 layers,
variable g

*  WAM runs at ~180 km horizontal
resolution, T62, compared to operational
weather model of ~12 km, T1534

* Includes all the lower atmosphere
weather and dynamics processes, as

well as all the additional T-I physics B _a
« Provides the 3D neutral winds, R

temperature, density, major species
composition O, O,, N,

+  WAM coupled to the IPE ionospheric
module using ESMF (3-D re-gridding)
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WAM Validation
Neutral DenS|ty

Comparison of WAM with
GOCE satellite neutral
density along-orbit
accelerometer observation
at ~250 km altitude
Diurnal/latitude structure
and storm response
captured

July 15th, 2020
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WAM vs GOCE St. Patrick’s Day 2013
RMSE: 4.5% orbit average, 9.8% along track

GOCE and Normalized Weimer_WAM Neutral Density 16-19 March 2013
16610

14E-10

12610

L0E-10

8.0E-11

6.0E-11

Neutral Density [kg/m?3]

40811

20E-11

WAM Global Neutral Mass Density at ~ 240.000km and GOCE at ~ 236.15142 km on March 16at  1.00000UT Hours

0.0E+00

75 76 77 B
Doy

Table 1. 16-19 March 2013 ...nsphysl_del8.nc (nonBIG_WAM) for point-to-point (along-orbit) and smooth (orbit-avert

Log space metrics Along-Orbit Orbit-Averaged
R 0.9488 0.95789
RMSE 0.09781 0.045426
RMSE? 0.009567 0.0020635
BIAS 1.035 1.0207
Standard Deviation 0.09173 0.034758
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Moderate storm
St. Patrick’s Day
March 2013
Dst - 132

Strong storm
St. Patrick’s Day
March 2015
Dst - 234

Major storm
November 2003
Dst-472

July 15th, 2020

ity [kg/m?]

al Den:

2 80811

GOCE and Weimer_WAM Neutral Density 16-19 March 2013

o
30% increase GOCE at 250km

—_—
r———}
———
f——
=——
r—
7]
a ==
- —
.__

‘!;ththhHhhlu “ml ‘ HMHHHM i
T Ty

GRACE and WAM_VBz_5000_25000 Neutral Density 2015 March 16-19
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Satellite Drag Take-Aways

*  Thermal expansion by EUV and geomagnetic storms are the most likely drivers of thermal expansion
and increased drag, flare EUV is likely to be smaller

»  The increased drag reduces lifetime of satellites, reduces accuracy of orbit prediction increasing risk of
collisions, but also cleans out some debris

*  The storm response is more uncertain and dynamic because the Joule heating in structured and changes
rapidly is response of the magnetosphere

*  The magnetosphere modulates the energy flow into the upper atmosphere from a CME striking Earth

*  The structure produced during a storm will make tracking objects with high area to mass ratio uncertain,
which again increases risk of collisions

*  The increase in nitric oxide from auroral production and temperature changes during a geomagnetic
storm is uncertain and will modulate the temperature and density response

*  The drag at higher altitudes 800-1000 km becomes more relevant with a big storm, and is a well
populated area of LEO objects, including debris

* Jon density (e.g., O") may contribute to drag at the higher altitudes during storms because the ion scale
heights are greater, and vertical ion distribution is more extended

*  Geomagnetic storms can occur at the same time as elevated EUV flux so the effects would be additive,
which could be a factor 10 increase in drag at 400 km altitude
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Thermosphere-lonosphere Responses to
Magnetospheric Sources

e Auroral precipitation and magnetospheric convection expanded enhancing
conductivity and plasma transport at high latitudes (scintillations, absorption)
e Magnetospheric “penetration electric fields” imposed globally in less than a
second (plasma reconfiguration at mid and low latitudes, HF comms.,
plasma gradients, irregularities, satellite communications, navigation)

e |on drag drives high latitude wind system up to ~ 1 km/s (drag)

e Joule and particle energy heats atmosphere, thermal expansion, neutral
density increase, winds (drag)

e Horizontal pressure gradients, equatorward wind surges, changes in global
circulation, neutral composition changes (HF comms.)

e Disturbance dynamo electric fields (plasma reconfiguration)

e Positive and negative ionospheric storm phases
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Neutral composition and positive and
negative ionospheric phases
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Oxygen Depletions Imaged from Space
— drives ionospheric depletions

D )ctober, 1981 (

Strong correlation between O/N,
and ionospheric depletions
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ionospheric response at mid-latitudes

Seasonal/local time variation in

Rodger et al. 1989

Negative phase peaks in summer
Positive phase peaks in winter
Negative phase peaks at dawn
Positive phase peaks at dusk
Response to summer/winter
seasonal circulation and
poleward/equatorward diurnal wind
variation

In (N/No)

(southern hemisphere mid-latitude station o
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WAM neutral density compared to GRACE at 450 km, temperature and height-
integrated O/N, compared to GUVI in response to St. Patrick’s Day 2015 storm

GRACE and WAM_VBz_5000_25000 Neutral Density 2015 March 16-19
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Positive phase -TEC response to expansion of magnetosphere convection (Rod Heelis)
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IPE Flux-Tube Footpoints

lonosphere-Plasmasphere-Electrodynamics
Component

Based on FLIP flux-tube model, Phil Richards (GMU), validated for >
20 years

o  Solves for ion species (O*, H*, He™, NO*, N,*, O,*, N*), electron and ion temperature
O  Solve for photoelectron production, transport, and loss — source of secondary
ionization, plasma heating, conjugate effects
0 Comprehensive photochemistry
O  Stable flux-preserving numerical scheme
©  Comprehensive neutral gas heating rates — when fed back to WAM
Global lonosphere-Plasmasphere-Electrodynamics configuration
O  Global seamless distribution of flux-tubes (see grid)
©  Perpendicular semi-Lagrangian ExB transport
O  Flexible resolution to match WAM T62
© International Geomagnetic Reference Atmosphere and APEX coordinate system
O Variable time-dependent polar cap boundary for plasma outflow and refilling

Self-consistent global dynamo electrodynamics, Richmond/Maute
ESMF 3-D re-gridding: information exchange between WAM and IPE
MPI parallel processing

Geographic Latitude
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Plasma Drifts (COSMIC Il IVM, DMSP)

A significant of driver storm-time TEC enhancement at mid-latitude
Needed to interpret irregularity metrics: ROTI, S4, and o,

Plasma Drifts 800 km 15UT March 17th 2015

Geodetic Latitude, Deg

-50 o 50
Geodetic Longitude, Deg

Total Electron Content 17th-16th 18UT 2015

> —
0.0 200.0 400.0 600.0 800.0 1000.0 1000.0

Data Min = 0.1, Max = 1782.8

1 2I(3/2-v) .
27 T(v+1/2)2v —1)2%

2
2 C
ROTI*(51) ~§CPG{

¢ Phase metrics (ROTI, o,) depend on effective scan
velocity to relate to intensity metric S, (Charlie Carrano
and Keith Groves)

Total Electron Content - Total Electron Content (TECu)

0.0 10.0 20.0 30.0 40.0 50.0
Data Min = -49.2, Max = 70.9, Mean = 7.8
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19UT March 17, 2013 North and South Hemisphere

VEXB over TEC

2013-Mar-17 19:00UT 1IT Haystack Observatory

17-Mar-2013 18:45:00 to 17-Mar-2013 19:00:00 TEC

VEXB over TEC
2013-Mar-17 19:00UT

120W

17-Mar-2013 18:45:01 00: TEC
90w

quiet initial ,

conditions e
Re-analysis vs IPE Anthea Coster
TEC maps MIT



120

Inversion TEC(TECU) 30-Mar-2001 19:00:00UT 120

\
)

Inversion TEC(TECU) 31-Mar-2001 19:00:00UT

o

Storm Enhanced Density (SED)

Impact on commercial aviation
Steep gradient at the “wall” of TEC
compromise integrity of navigation signals,
130 TEC units over 50 km, 20 m of GPS delay.
Outages of Wide Area Augmentation System (WAAS)



lonospheric positive storms: Combination of poleward movement of Equatorial lonospheric Anomalies
(EIA) due to penetration electric field and build-up of mid-lat plasma by the Heelis effect

100 Mannucci et al 2005
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Storm-Time Electrodynamics: disturbance dynamo

. J=0(E+V,xB)
Blanc and Richmond (1980) theory:

v.J=0 E=-Vo
* Equatorward winds drive zonal winds at mid-latitude through the action

of the Coriolis force
» Zonal winds — equatorward Pedersen current

o
« Equatorward wind — equatorward Hall current Jo, =———u,B+0,u,B
* Positive charge builds up at the equator SIPI
producing a poleward directed electric Sy = Oy siluy B+ o,u,B
field which balance the wind driven o o
=—LF 2 F

equatorward current Jor = — et p

sin/ sin/
 Eastward Hall current causes +ve charge 7o E £
build up at the dusk terminator and -ve charge op = Tk + O,

build-up at dawn
* Reverse Sq
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Before Storm

lonospheric Storm Response 6

10s- Plasmasphere equatorial Ne

The erosion of plasma from the expanded convection . _asafuncionofiandmiT R
and movement of the polar cap (open/closed) boundary : *
equatorward

A build up of plasma can occur at mid-latitude, possibly
with storage in the topside ionosphere and
plasmasphere and aided by equatorward neutral winds
The plasma build up is associated with the development
of the SED feature, characterized by the tongues of
ionization transported towards the magnetic poles :
“Negative phases” from the change in thermospheric E—— e MIT TECE
neutral composition ] Anthea Coster
Poleward movement of equatorial ionization anomaly by
low latitude penetration and dynamo electric fields

/em3]
g
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Drivers of Space Weather in the Upper Atmosphere

Solar flares

Solar Proton Events

Solar Radio Bursts

Geomagnetic storms driven by coronal mass ejections or corotating
interaction regions

e \Waves propagating from the lower atmosphere
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Model Layer 128 Temperature at 03/17/13 00:00Z

Structure and variability of vertical wind,
temperature, and density at 250 km altitude in
response to waves from lower atmosphere

W 250km W at 2013/03/16 03Z

180" E

Neutral temperature (above)
neutral density (below)
250km altitude

WAM Global Neutral Mass ityat  240.000km and GOCE at  236.15142 km on March 16at  1.00000UT Hours

or s
rE




Four peak longitude structures in the ionosphere

The four peaks driven by
nonmigrating eastward
propagating tidal mode
with zonal wavenumber
3 (DE3) in dynamo
region.

F REGION IONIZATION
TRANSPORT PROCESSES

nnnnnnn

100 200
Brightness, Rayleighs

IMAGE composite of 135.6-nm O airglow (350—400 km) in March—April
2002 for 20:00 LT and amplitude of modeled diurnal temperature
oscillation @ 115 km (Immel et al., 2006).
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Driver of the Immel longitude structure

Lightning strikes from convective storms, signature of latent heat release:
Either three or four peaks in longitude: wave 3 or 4
llluminated by the Sun every 24 hours: diurnal

cos (2t + 1) cos 44 ---> cos (02t + 52) + cos(f2t - 32)
cos (2t + 1) cos 34  ---> cos (02t + 42) + cos(Nt ;2).)\

Can create a diurnal eastward propagating W2 or W3 DE2 and DE3
July 15th, 2020 Heliophysics Summer School
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Sources from the Lower Atmosphere

Longitude structure of tropical convection modulates non-
migating tidal modes (DE3, DE2), which drive winds and
electrodynamics in lower thermosphere dynamo region

Jan 10 UT00 840K PV North

e Changes in stratospheric circulation (e.g., sudden
stratospheric warmings) modulating semi-diurnal migrating
tidal modes, which also drive electrodynamics

Mar 20N UTOO 285km
local time
18 20 22 0 2 4 S

Mldnlght temperature and density maxima (MTM, MDM)

modulates temperature and density structure, wind R |

reversals, and direct impact on F-region ionosphere ; e

e Spectrum of waves from lower atmosphere dr|V|ng wind,
temperature, and composition variability directly impacts
the ionosphere and electrodynamics, including possible

triggering of ionospheric irregularities
Julv 15th. 2020 Heliophvysics Summer School
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50% increase in TEC in January 2009 when solar and
geomagnetic activity were very low

60-90°N Zonal Mean Temperature
10 hPa

Goncharenko et al. 2010 260 : EE— E
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Benefits of WAM

e Compatible with the US weather model already running
operationally

e Can implement the operational Gridpoint Statistical
Interpolation (GSI) data assimilation system, utilizing the
lower atmosphere data

e Able to follow real lower atmosphere weather events and
their impact on the upper atmosphere and ionosphere
(such as hurricanes, tornados, planetary waves, sudden
stratospheric warming, tropical convection, longitude
structure in migrating and non-migrating tides)

July 15th, 2020 Heliophysics Summer School 65



WAM simulations of the January 2009
sudden stratospheric warming (9 380 a7 (200
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January 2009 Stratospheric Warming impact on EIA

GPS-TEC observation
before and after SSW
Goncharenko et al. (2010)
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WAM temperature perturbations at Arecibo
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Bubble development in physics-based irregularity model
(PBMOD) with WAM fields (180 km horizontal.
resolution, V4 scale-height vertical, ~2-5km) with no
additional seeding Retterer et al.
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Waves propagate from tropospheric sources through the atmosphere
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New Theories for Phase and Intensity Metrics

* Rino’s power law (weak) scintillation theory implies, in scale-free limit go—0:

2v-1
s %<V<% SNTS
PAS, 55K

Vot

2 —
ROTIZ(&%%CPG[l 3/2-v) }
t

27 T(v +1/2)2v —1)22]
(Carrano et al., 2019

2 \/;F(V) 2v-1
6; (r.)= CpG 2vil N e ’ % <v
2v—-1 Q2r)y™T'(v+1/2)
(Carrano et al., 2016
T[(5/2-v)/2] )
SZ:CPQW)vHQ ( ) PP 3<v<3 -
22 v 1241/ 4](v—1/2) PLANE WAVES
(Rino, 1979)
where
Cp — phase spectral strength G - phase enhancement factor due to geometry
¢ (v) —geometry and propagation factor pr—Fresnelscale  p, = \/ZZR secd/(2r)
v - related to irregularity spectral index as p(3)=2v+1 I — gamma function

 Phase metrics (ROTI, o,) depend on effective scan velocity to the power
2v+1.
* Intensity metric (S;) depends on Fresnel scale to the power 2v+1.

July 15th, 2020 | - All three metrics depend on irregularity strength in the same way.
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Summary and Conclusion

e The thermosphere and ionosphere is end point of much of the
solar and magnetospheric forcing of space weather, and the host
of many of the impacts on operational systems (e.g., HF
propagation, satellite drag, satellite communication and
navigation)

e Space weather can also be driven from the chaotic lower
atmosphere — a new paradigm in space weather

e Questions?
e Email tim.fuller-rowell@noaa.gov
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WAM agrees well with the diurnal migrating
tide DW1 and the famous DE3

WAM model top: Akmaev et al. 2008
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Example of impact of tidal variability
Tzu-Wei Fang et al. 2013 from WAM-GIP model simulation
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Variability of Electrodynamics

GIP Plasma Drift Vyer [m/s]
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