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Journey through space
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From particles to fluids

3

• Guiding Center (GC) Theory → single particle motion in complex EM fields 

• If a system contains a large number of particles, GC theory must be 

augmented with a theory that describes the dynamics of a group of 

particles. 

• Kinetic theory is capable of deriving transport coefficients from the fundamental 
properties of the gas molecules. However, this leads to a seven-dimensional partial 
integro-differential equation→challenging to solve.

• Compressible fluid dynamics describes the fundamental conservation laws for a continuous 
medium that is composed of individual particles. 

• The particle density, however, is so large that a continuum description is warranted.

• In fluid dynamics, the classical gas transport coefficients (diffusion coefficient, viscosity, 
heat conduction) lose their meaning, because the internal state of the gas becomes 
too complicated, and the coefficients cease to be constant. 

• The challenge is how to connect microscopic and macroscopic quantities.
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Velocity moments

5

• Order of a velocity moment: the sum of 
the powers of velocity components in the 
moment integral. For instance:
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Velocity moments

6

• Order of a velocity moment: the sum of 
the powers of velocity components in the 
moment integral. For instance:

▪ Second Moment: Pressure Tensor

▪ Temperature

▪ Stress Tensor

▪ Heat Flow

▪ Zeroth moment: Density

▪ First Moment: Particle Flux
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Navier-Stokes equations
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• The zeroth, first and second moments of the Boltzmann equation are:
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Navier-Stokes equations

8

• The zeroth, first and second moments of the Boltzmann equation are:

• Neglecting the viscous term and heat  conduction → Euler equations

0

0
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Navier-Stokes equations
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• The zeroth, first and second moments of the Boltzmann equation are:

• Neglecting the viscous term and heat  conduction → Euler equations
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• Consider a self-consistent description of a conducting fluid and the electromagnetic fields

• Neglect heat conduction and viscosity

• Assume quasi-neutrality

• Neglect the displacement current in Ampére’s law

Ideal MHD equations: a combination of 
Euler and Maxwell’s equations
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Ideal MHD equations: a combination of 
Euler and Maxwell’s equations
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• Consider a self-consistent description of a conducting fluid and the electromagnetic fields

• Neglect heat conduction and viscosity

• Assume quasi-neutrality

• Neglect the displacement current in Ampére’s law

• Maxwell’s equations now can be simplified
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• Consider a self-consistent description of a conducting fluid and the electromagnetic fields

• Neglect heat conduction and viscosity

• Assume quasi-neutrality

• Neglect the displacement current in Ampére’s law

• Maxwell’s equations now can be simplified

• On the other hand

Ideal MHD equations: a combination of 
Euler and Maxwell’s equations



E L E C T R I C A L  &  C O M P U T E R  E N G I N E E R I N G G R A I N G E R  E N G I N E E R I N G 13

• Consider a self-consistent description of a conducting fluid and the electromagnetic fields

• Neglect heat conduction and viscosity

• Assume quasi-neutrality

• Neglect the displacement current in Ampére’s law

• Maxwell’s equations now can be simplified

• On the other hand

• We get the convection-diffusion  equation

Ideal MHD equations: a combination of 
Euler and Maxwell’s equations
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MagnetoHydroDynamics (MHD) Theory
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• Considers the coupled evolution of conducting fluids with the electromagnetic field.

• The evolution is self-consistent: the fluid is both influenced by the field, and creates a field due 
to currents (and charge separation, if present).

• The MHD equations are a combination of the Euler equations and Maxwell’s equations.
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Continuity equations and conservation laws

15
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Continuity equations and conservation laws
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𝜒 is the conserved quantity
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Continuity equations and conservation laws

17

𝜒 is the conserved quantity transport agent of 𝜒
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Continuity equations and conservation laws

18

𝜒 is the conserved quantity transport agent of 𝜒 source/sink of  𝜒
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Continuity equations and conservation laws
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𝜒 is the conserved quantity transport agent of 𝜒 source/sink of  𝜒
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Continuity equations and conservation laws

21

𝜒 is the conserved quantity transport agent of 𝜒 source/sink of  𝜒

Identify the 

conserved quantity 
in each  of these 

equations
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Continuity equations and conservation laws

22

𝜒 is the conserved quantity transport agent of 𝜒 source/sink of  𝜒

Conservation of mass

Conservation of energy

Conservation of momentum

Continuity equations are stronger, locally applied forms of conservation laws!

Induction equation
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MHD theory - recap
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MHD is a fluid approximation, and often regarded as the lowest approximation 
for describing plasmas self-consistently.

• Can be derived either via

• Fluid Dynamics (will demonstrate this next)

• Kinetic Theory (from either the microscopic plasma equation of the statistic 
plasma distribution), then take moments of Boltzman equation

• It only applies for large length and time scales that allow us to ignore single-
particle motion and displacement current.

• Plasmas in space are much more rarified compared to “regular” fluids.

• The fluid behavior stems not from “billiard ball collisions” but from the 
collective interaction at a distance due to electromagnetic forces 
between the particles.

• Free charges do not accumulate, since the systems is assumed to be a 
good conductor 
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Limitations of MHD equations

24

Inherent difficulty: more variables than equations 

• the nth velocity moment also depends on the components of the (n+1)th 

moment 
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Limitations of MHD equations
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Inherent difficulty: more variables than equations 

• the nth velocity moment also depends on the components of the (n+1)th 

moment 

0th  moment eq.

1st moment eq. 

For instance: 
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Inherent difficulty: more variables than equations 

• the nth velocity moment also depends on the components of the (n+1)th 

moment 

• closing the system requires restrictive assumptions about the nature of the fluid 
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Limitations of MHD equations
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Inherent difficulty: more variables than equations 

• the nth velocity moment also depends on the components of the (n+1)th 

moment 

• closing the system requires restrictive assumptions about the nature of the fluid 

• plasma can be assumed to be in local thermal equilibrium and described by a 

Maxwellian distribution function → plasma behaves like an ideal gas with an 

adiabatic equation of state 
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Limitations of MHD equations

28

Inherent difficulty: more variables than equations 

• the nth velocity moment also depends on the components of the (n+1)th 

moment 

• closing the system requires restrictive assumptions about the nature of the fluid 

• plasma can be assumed to be in local thermal equilibrium and described by a 

Maxwellian distribution function → plasma behaves like an ideal gas with an 

adiabatic equation of state 

• the fluid is infinitely conducting (all free charges)

• there is no electric field in the rest frame

• heat conduction is neglected
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Limitations of MHD equations

29

Inherent difficulty: more variables than equations 

• the nth velocity moment also depends on the components of the (n+1)th 

moment 

• closing the system requires restrictive assumptions about the nature of the fluid 

• plasma can be assumed to be in local thermal equilibrium and described by a 

Maxwellian distribution function → plasma behaves like an ideal gas with an 

adiabatic equation of state 

• the fluid is infinitely conducting (all free charges)

• there is no electric field in the rest frame

• heat conduction is neglected

Non-ideal MHD descriptions exist which include finite resistivity, heat conduction, and 

charge separations (modified MHD equations, still fluid description!!)
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Concepts in Fluid Dynamics: conservation of mass

30

MHD fluid treated as a continuum

• any small volume in a fluid 
element contains a large 
number of particles 
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Concepts in Fluid Dynamics: conservation of mass
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MHD fluid treated as a continuum

• any small volume in a fluid 
element contains a large 
number of particles 

• Given a macroscopic fluid with density ρ, velocity u(x, y, z, t) 
of the fluid element at (x, y, z) and time t. 

• For a fluid displaced in a time dt a distance u dt → the mass 
of the fluid crossing the surface element dS per unit time is 
𝜌𝑢 ⋅ ො𝑛 𝑑𝑆 𝑡

•  Total mass, assuming a closed system with no sources nor 
sinks, 
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Mass continuity equation: 

• valid for all fluids, independent of their nature (adiabatic, 
isothermal, compressional, turbulent, etc.) 

Concepts in Fluid Dynamics: conservation of mass

32

MHD fluid treated as a continuum

• any small volume in a fluid 
element contains a large 
number of particles 

• Given a macroscopic fluid with density ρ, velocity u(x, y, z, t) 
of the fluid element at (x, y, z) and time t. 

• For a fluid displaced in a time dt a distance u dt → the mass 
of the fluid crossing the surface element dS per unit time is 
𝜌𝑢 ⋅ ො𝑛 𝑑𝑆 𝑡

•  Total mass, assuming a closed system with no sources nor 
sinks, 
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Continuity equation

33

Initial condition: a 
blob of dense 
plasma moving in 
the x-direction (to 
the right) with 
uniform speed.

The final blob is deformed – more about 

this later
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Momentum equation

34

• Equation of motion for a single particle 
moving with velocity v  in an EM field

• Assuming no thermal motions and no 
collisions→ all n particles move together with 
fluid u: equation for the force density
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• But thermal motion gives rise to pressure p, 
and assuming the charged particle fluid acts 
as an ideal gas (p = nkT and the pressure is 
not uniform) 

• The pressure is isotropic → p is scalar. 

Momentum equation
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• Equation of motion for a single particle 
moving with velocity v  in an EM field

• Assuming no thermal motions and no 
collisions→ all n particles move together with 
fluid u: equation for the force density
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• The equation of motion for each 
species: 

charge neutrality: 

total pressure: 

current density: 

▪ Momentum equation:
• But thermal motion gives rise to pressure p, 

and assuming the charged particle fluid acts 
as an ideal gas (p = nkT and the pressure is 
not uniform) 

• The pressure is isotropic → p is scalar. 

Momentum equation

36

• Equation of motion for a single particle 
moving with velocity v  in an EM field

• Assuming no thermal motions and no 
collisions→ all n particles move together with 
fluid u: equation for the force density
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Momentum equation

37
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Momentum equation

38

0

no ambient magnetic field
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Momentum equation

39

B = 0,
n uniform
inverted T 

0

no ambient magnetic field
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Momentum equation

40

B = 0,
n uniform
inverted T 

“Free” expansion 

0

no ambient magnetic field
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Momentum equation

41

B = 0,
n uniform
inverted T 

“Free” expansion 
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Momentum equation

42

B = 0,
n uniform
inverted T 

B ≠ 0,
Bx=0.01T
By= Bz=0

“Free” expansion 
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Momentum equation

43

B = 0,
n uniform
inverted T 

B ≠ 0,
Bx=0.01T
By= Bz=0

Cross-field flow is inhibited“Free” expansion 
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Momentum equation

44

B = 0.01T

We can understand                                      in terms of currents:

• The expansion distorts the frozen-in 

magnetic field, creating a z-component→ 
Bz ≠ 0

Note that the “hill” shaped field lines are not 
visible seen since Bz << Bx!!
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Momentum equation

45

B = 0.01T

We can understand                                      in terms of currents:

• The expansion distorts the frozen-in 

magnetic field, creating a z-component→ 
Bz ≠ 0

Note that the “hill” shaped field lines are not 
visible seen since Bz << Bx!!

• The curl in B is associated with a current Jy.

• A J x B (Lorentz) force arises in the z-

direction, opposing the expansion.
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Momentum equation

46

B = 0.01T

We can understand                                      in terms of currents:

• The expansion distorts the frozen-in 

magnetic field, creating a z-component→ 
Bz ≠ 0

Note that the “hill” shaped field lines are not 
visible seen since Bz << Bx!!

• The curl in B is associated with a current Jy.

• A J x B (Lorentz) force arises in the z-

direction, opposing the expansion.
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Momentum equation

47

B = 0.01T

• The expansion distorts the frozen-in 

magnetic field, creating a z-component→ 
Bz ≠ 0

Note that the “hill” shaped field lines are not 
visible seen since Bz << Bx!!

• The curl in B is associated with a current Jy.

• A J x B (Lorentz) force arises in the z-

direction, opposing the expansion.

We can understand                                      in terms of currents:
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Momentum equation

48

▪ This term arises from the coupling of the 

current density to the magnetic field!
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Momentum equation

49

▪ This term arises from the coupling of the 

current density to the magnetic field!

▪ This is the force that makes the EM fluid 
different than the ordinary neutral gas
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Momentum equation

50

▪ This term arises from the coupling of the 

current density to the magnetic field!

▪ This is the force that makes the EM fluid 
different than the ordinary neutral gas

▪ J x B = electromagnetic stress tensor 
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Momentum equation

51

▪ This term arises from the coupling of the 

current density to the magnetic field!

▪ This is the force that makes the EM fluid 
different than the ordinary neutral gas

▪ J x B = electromagnetic stress tensor 

This means that 

the fluid is being 
driven in the 

opposite direction 
from the direction 
of the pressure 

gradient.



E L E C T R I C A L  &  C O M P U T E R  E N G I N E E R I N G G R A I N G E R  E N G I N E E R I N G

Momentum equation

52

▪ This term arises from the coupling of the 

current density to the magnetic field!

▪ This is the force that makes the EM fluid 
different than the ordinary neutral gas

▪ J x B = electromagnetic stress tensor 

This means that 

the fluid is being 
driven in the 

opposite direction 
from the direction 
of the pressure 

gradient.

[Re-arranged]→includes the magnetic pressure and tension that act on the fluid

𝜕(𝜌𝐮)

𝜕𝑡
+ 𝛻 ∙ 𝜌𝐮𝐮 + 𝑝𝐼 −

𝐵2

2 𝜇0

𝐼 −
𝑩𝑩

𝜇0
= 𝜌𝐠
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Continuity and Momentum equations

53

• They apply all fluids, regardless of their nature, and are fundamental laws of 
physics. 

• Contain 15 independent vars (E, B, J, u, ρ, ρe, p) but only 11 independent 
eqns.

• Additional equations are obtained by making assumptions on the nature of 
the fluid. 

• Assume that the fluid acts like a conductor → use Ohm’s law (adds 3 more 
eqns.) 

• Assign a thermodynamic equation of state to the fluid (ads 1 more equation). 

The closed set of MHD equations REQUIRES restrictive assumptions! 
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Low-frequency Maxwell’s equations

54

Neglecting displacement current in Maxwell's equations implies that MHD deals 
with low frequency phenomena.

• Note that                                             ,where T is the characteristic time variation of EM quantities 

• MHD requires                                                           , where L is the characteristic spatial variation 
of EM quantities

• Highly conducting fluid implies 

• This means that

• For most cases,                , therefore displacement current can be ignored if 

0
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Why does MHD ignores charge density?

55
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Why does MHD ignores charge density?

56

• Let’s consider the conservation of charge: 
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Why does MHD ignores charge density?

57

• Adding them we get

• Let’s consider the conservation of charge: 

where the total current density is given by:
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Why does MHD ignores charge density?

58

• Adding them we get

• Let’s consider the conservation of charge: 

where the total current density is given by:

• Using Ohm’s law

and assuming constant conductivity, we get
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Why does MHD ignores charge density?

59

• Adding them we get

• Let’s consider the conservation of charge: 

where the total current density is given by:

• Using Ohm’s law

and assuming constant conductivity, we get

which admits a solution

?
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Why does MHD ignores charge density?

61

• Adding them we get

• Let’s consider the conservation of charge: 

where the total current density is given by:

• Using Ohm’s law

and assuming constant conductivity, we get

which admits a solution

Charge density rapidly decays with time!
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Energy equation

62

• Starting from the momentum and continuity equations, assuming the MHD 
fluid to be adiabatic and σ → ∞, we obtain (with effort) the energy equation:
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Energy equation

63

kinetic energy of 
the fluid motion. 

• Starting from the momentum and continuity equations, assuming the MHD 
fluid to be adiabatic and σ → ∞, we obtain (with effort) the energy equation:
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Energy equation

64

kinetic energy of 
the fluid motion. 

thermal 
energy 

• Starting from the momentum and continuity equations, assuming the MHD 
fluid to be adiabatic and σ → ∞, we obtain (with effort) the energy equation:
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Energy equation

65

kinetic energy of 
the fluid motion. 

total energy density 
of the magnetic field

thermal 
energy 

• Starting from the momentum and continuity equations, assuming the MHD 
fluid to be adiabatic and σ → ∞, we obtain (with effort) the energy equation:
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Energy equation

66

kinetic energy of 
the fluid motion. 

total energy density 
of the magnetic field

thermal 
energy 

rate at which these energies 
are flowing

• Starting from the momentum and continuity equations, assuming the MHD 
fluid to be adiabatic and σ → ∞, we obtain (with effort) the energy equation:
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Energy equation

67

Note: The energy equation gives additional information and in many MHD cases is not 
needed for closure.

kinetic energy of 
the fluid motion. 

total energy density 
of the magnetic field

thermal 
energy 

rate at which these energies 
are flowing

• Starting from the momentum and continuity equations, assuming the MHD 
fluid to be adiabatic and σ → ∞, we obtain (with effort) the energy equation:
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Ideal MHD equations

68

• Goal #1: Name each of the equation above. 
• Each of them is a conservation law of a different physical quantity. The conserved quantity appears 

in the time-derivative in each of the equations. 

• Goal #2: Describe each of the terms in the equations.
• For each of these four conservation law, you should be able explain how each term works to 

change the conserved quantity. 

• For each equation, compare the rank of all terms (i.e. are they scalar, vector or 2D-tensor).
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Induction equation
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Exercise: Assume a plasma of uniform density 
and pressure, moving in the x-direction at 
uniform speed 𝐮 ⋅ ො𝐱. The initial ambient 
magnetic field B =(0,0,B0(x)) in a bounded 
region - 1 < x < 1 and B = 0 everywhere else. 
Use the induction equation to calculate the 
magnetic field as a function of position (x) 
after T seconds.

• Describes the evolution of the magnetic field due to fluid motions at bulk velocity u:
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Induction equation

70

• Describes the evolution of the magnetic field due to fluid motions at bulk velocity u:
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Induction equation

71

Exercise: Assume a plasma of uniform density 
and pressure, moving in the x-direction at 
uniform speed 𝐮 ⋅ ො𝐱. The initial ambient 
magnetic field B =(0,0,B0(x)) in a bounded 
region - 1 < x < 1 and B = 0 everywhere else. 
Use the induction equation to calculate the 
magnetic field as a function of position (x) 
after T seconds.

• Describes the evolution of the magnetic field due to fluid motions at bulk velocity u:

• Infinite conductivity → the field is frozen into 
plasma.
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Imagine a world where electrical charges 
have only one polarity. Describe it!
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Ideal MHD equations
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Mathematically, these are hyperbolic partial differential conservation laws:

• Partial differential equation: we need to specify initial and boundary 
conditions

• Hyperbolic: for a given initial boundary problem, a solution can be found 
in any other time and location

• Most importantly for solving numerically: information propagates with a 
characteristic speed

• Conservation law: there is a quantity that is conserved as it is transported
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Back to mass continuity equation

75

Initial condition: a 

blob of dense 

plasma moving in 

the x direction (to 

the right) with 
uniform speed.
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How did we simulate it?

76

𝜕𝜌

𝜕𝑡
=

𝜕

𝜕𝑥
𝜌 𝑢𝑥  = 𝑢𝑥

𝜕

𝜕𝑥
𝜌 

simplify to 1D:

Discretization over a grid:
j j + 1j - 1

Spatial derivative:

𝜕

𝜕𝑥
𝑊 𝑥, 𝑡

yields 𝑊(𝑥𝑗) − 𝑊(𝑥𝑗−1)

∆𝑥

𝜕

𝜕𝑡
𝑊 𝑥, 𝑡

yields 𝑊𝑛+1(𝑥𝑗) − 𝑊𝑛(𝑥𝑗)

∆𝑡

Temporal derivative:

n

n+1
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Putting it all together

77

𝑊𝑛+1 𝑥𝑗 = 𝑢∆𝑡
𝑊𝑛(𝑥𝑗) − 𝑊𝑛(𝑥𝑗−1)

∆𝑥

The solution at a given location and time depends on information 

from a limited set of points from the previous time step
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MHD Equations

78

Mathematically, these are hyperbolic partial differential conservation laws:

• Partial differential equation: we need to specify initial and boundary 
conditions

• Hyperbolic: for a given initial boundary problem, a solution can be found 
in any other time and location

• Most importantly for solving numerically: information propagates with a 
characteristic speed

• Conservation law: there is a quantity that is conserved as it is transported
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Implications
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We are limited in how we chose cell sizes and time steps: 
• must allow information to reach the next cell within a time step 

before we update the solution
   

𝑊𝑛+1 𝑥𝑗 = 𝑢∆𝑡
𝑊𝑛(𝑥𝑗) − 𝑊𝑛(𝑥𝑗−1)

∆𝑥

Example: a blob moving at 1 km/s

      cell size dx = 100 km
      time step  dt = 10 s

After one time step the blob should move 10 km – it would not reach the 
next grid point!

Updating the solution at j would give non-physical results
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To trust or not to trust

80

𝑊𝑛+1 𝑥𝑗 = 𝑢∆𝑡
𝑊𝑛(𝑥𝑗) − 𝑊𝑛(𝑥𝑗−1)

∆𝑥

𝜕𝑊

𝜕𝑡
= 𝑢

𝜕

𝜕𝑥
𝑊

Does the solution:

Reliably mimics:
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Numerical errors

81

𝑊 (𝑥𝑗+1) − 𝑊 (𝑥𝑗)

𝑑𝑥
= ቤ

𝜕𝑊

𝜕𝑥
𝑥𝑗

+
1

2
อ

𝜕2𝑊

𝜕𝑥2

𝑥𝑗

𝑑𝑥 + … .

𝑊 𝑥𝑗+1 = 𝑊 𝑥𝑗 + 𝑑𝑥 = 𝑊 𝑥𝑗 + ቤ
𝜕𝑊

𝜕𝑥
𝑥𝑗

𝑑𝑥 +
1

2
อ

𝜕2𝑊

𝜕𝑥2

𝑥𝑗

𝑑𝑥2 + ℎ. 𝑜. 𝑡

Let’s write a Taylor expansion to find the value at the next grid point:

𝑊 𝑥𝑗+1 − 𝑊 𝑥𝑗 = ቤ
𝜕𝑊

𝜕𝑥
𝑥𝑗

𝑑𝑥 +
1

2
อ

𝜕2𝑊

𝜕𝑥2

𝑥𝑗

𝑑𝑥2 + ℎ. 𝑜. 𝑡

𝜕𝑊

𝜕𝑥

let’s simplify and compare

to:

𝑊 (𝑥𝑗+1) − 𝑊 (𝑥𝑗)

𝑑𝑥
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Numerical errors
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𝜕𝑊

𝜕𝑥

let’s simplify and compare

to:

𝑊 (𝑥𝑗+1) − 𝑊 (𝑥𝑗)

𝑑𝑥

𝑊 (𝑥𝑗+1) − 𝑊 (𝑥𝑗)

𝑑𝑥
= ቤ

𝜕𝑊

𝜕𝑥
𝑥𝑗

+
1

2
อ

𝜕2𝑊

𝜕𝑥2

𝑥𝑗

𝑑𝑥 + … .

This is what we wanted to simulate This is the error

"In theory there is no difference between theory and practice, 

while in practice there is.”  [Benjamin Brewster, 1881]



E L E C T R I C A L  &  C O M P U T E R  E N G I N E E R I N G G R A I N G E R  E N G I N E E R I N G

Numerical errors

83

Error compared to an analytical 

solution
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Error analysis

84

Not so easy to do so for the other MHD equations…
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Error analysis

85

Every perturbation can be broken into Fourier components, and they will 
propagate as…

…MHD waves
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Hyperbolic conservation laws

86

When we derive the MHD wave speeds (linearization, plugging a wave 
solution, dispersion relations, etc.), we actually find a Jacobean matrix of 

this system of equations

Hyperbolic differential equations are characterized by this matrix having 

real eigenvalues – these are the wave speeds.

In the most general sense, every set of coupled hyperbolic equations has 
characteristic waves speeds – this is how physical information propagates!
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Examples

87

Euler equation (fluid dynamics):  acoustic speeds

E&M wave equation: speed of light

MHD equations: Alfven, fast and slow magnetosonic

Check yourself: there are always as many speeds as there are equations!

For fluid equations, one speed is always the flow speed: whatever structure 
we have, it is transported with the flow (see blob example).
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Practical Implications: time stepping
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C < 1

Have to take into account all the wave speeds!

This can make simulations very slow
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Implications: numerical diffusion

89

𝑊 (𝑥𝑗+1) − 𝑊 (𝑥𝑗)

𝑑𝑥
= ቤ

𝜕𝑊

𝜕𝑥
𝑥𝑗

+
1

2
อ

𝜕2𝑊

𝜕𝑥2

𝑥𝑗

𝑑𝑥 + … .

diffusion-like term

The remedy: decrease dx 

(can be expensive)
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Implications: div B control

90

According to Maxwell’s equations, 𝛁 ⋅ 𝑩 = 0

Discretization errors will generally violate this equality

The residual 𝛁 ⋅ 𝑩 has to be “evicted”
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Word of caution:

In the real world of computational physics (and 
numerical simulations in general), we don’t have 

analytical solutions to compare to.

If we did, we wouldn’t need simulations…
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Hierarchy of descriptions of plasmas

92

particle in cell (PIC)

kinetic (6D)

kinetic (reduced)

hybrid fluid-PIC

higher moment fluid

extended MHD

ideal MHD

(reduce number of particles)

(distribution function 

instead of individual 

particles)

Individual particles

Fluid

(electrons treated as a fluid, 

protons as particles)

more complex physics, 

still a fluid description
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Ideal MDH simulations

93

Current Earth Early Earth

IMF: Bz = -6 nT,

vx = -400 km/s , n = 5 cm−3.

IMF: Bz = -9 nT,

vx = -400 km/s , n = 26 cm−3, M = 0.1ME
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Ideal MDH simulations

95

Current Earth Early Earth

IMF: Bz = -6 nT,

vx = -400 km/s , n = 5 cm−3.

IMF: Bz = -9 nT,

vx = -400 km/s , n = 26 cm−3, M = 0.1ME

Which of the above parameters are the 
dominant factors in shaping the size of the 

polar cap?
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Hierarchy of descriptions of plasmas

“All particles and fields” 
Solve the EOM for all particles in given E, B

Calculate resulting charge density and currents

Calculate E, B

Physical 
description

Computation
al feasibility

complete impossible

Macro particles/statistical
Sample the distribution function

Solve for macro particles that represent many particles with 

similar states

most physical 
processes 

captured

expensive

Kinetic
Discretize the distribution function over a grid in phase 

space.

Solve Boltzmann/Vlasov equation (with or without collision 

terms)

many physical 
processes 

captured

expensive – 
need to 

solve 6D  

equations
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Hierarchy of descriptions of plasmas

“Hybrid” 
Solve the EOM for ions, fluid equations for electrons

Calculate resulting charge density and currents

Physical 
description

Computation
al feasibility

cannot resolve 
electron scale 

dynamics

Speed depends 
on number of 

macroparticles. 

Solution can be 

noisy

cannot resolve 
particle 

dynamics

Hall MHD
Incorporate full form of Ohm’s law

higher-order 
moments 

neglected, 

smooth solution

Higher moment fluid equations
Solve fluid(s) equations with higher-order closure: 

pressure is a 2nd order tensor (9 elements), heat flux is 

a 3rd order tensor, etc.

Complex 
relationships, 

many coupled 

equations
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Hierarchy of descriptions of plasmas

Extended MHD (many combinations)
Extend state vector to include anisotropic pressure 

(represented by diagonal tensor with 3 elements), 

separate electron and ion pressures, heat conduction 

vector (not 3D tensor), radiative cooling, resistivity, etc.

Physical 
description

Computation
al feasibility

imposes frozen-
in regime, 

cannot describe 

reconnection

second-order 
derivatives may 

make the 

problem stiff, no 

exact Riemann 

solver

Ideal MHD
Solve fluid equations with scalar pressure and 

assuming thermal equilibrium

many efficient, 
scalable codes 

exist

imposes frozen-
in regime, 

cannot describe 

reconnection
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