Q: Why does the Sun have a Corona? A Wind?

Dana Longcope Montana State University

With liberal "borrowing" from Hansteen, Schrijver, Gosling, Jokipii, Giacalone, Lean, ...

Coronal (EUV) imaging – the basics:

- what you see is all the same T (1.5 x 10⁶ K)
- bright = dense plasma n_e^2
- heating can* make plasma dense & thus bright
- heating is evidently magnetic

* if magnetic field lines are closed – magnetic bottle

B large enough to restrict plasma motion: only along field lines

radiation

Below the TR – hairy details

Heating is Magnetic

Corona produces EUV & X-ray

Chamberlin et al. 2009

Corona produces µ-waves

outflow

DO/AIA- 193 20110719_234244

radiation

heat in

Wind: from open flux

Advective energy loss –
$$\frac{1}{2}\rho \mathbf{v}v^2 + \rho \mathbf{v}w(\rho)$$

>> radiative loss

➔ Mass loss rate is set by heating rate*

$$\dot{M} = \frac{Q}{F_x}$$

→ density everywhere is set by mass loss rate

$$\rho(r_x) = \frac{\dot{M}}{A(r_x)c_s}$$

→ density @ base is set by heating rate*...

... and it will be lower than density on closed loops w/ same heating (Why?)

* ... and geometry of flux tube A(s)

const. fixed by need to become transonic when external back-pressure is insufficient – i.e. vacuum around sun

B large enough to restrict plasma motion: only along field lines

radiation heat in Different coronae from different magnetic topology: open vs. closed

Why are some field lines open & others closed?

Magnetic field dominates: nothing capable of countering its force so...

$$(\nabla \times \mathbf{B}) \times \mathbf{B} = 0$$

$$\Rightarrow \nabla \times \mathbf{B} = \alpha \mathbf{B} \quad (i e. || \mathbf{B})$$

simplest version: $\alpha = 0$ (by fiat)

$$\Rightarrow \nabla \times \mathbf{B} = 0 \quad \Rightarrow \begin{bmatrix} \mathbf{B} = -\nabla \chi \end{bmatrix} \text{ potential field}$$
(cf. electrostatics)

$$\nabla \cdot \mathbf{B} = 0 \quad \Rightarrow \quad \nabla^2 \chi = 0$$

harmonic potential (cf. electrostatics in vacuum)

 $\mathbf{B} = -\nabla \chi \quad \& \quad \nabla^2 \chi = 0$

potential field outside sphere r=R_o

potential field outside $\mathbf{B} = -\nabla \boldsymbol{\chi} \quad \& \quad \nabla^2 \boldsymbol{\chi} = \mathbf{0}$ sphere r=R_o

Solar wind flows from open field crossing r=R_s ... the `source' of the wind → the `source surface' $B_r(\theta,\phi)$ ``measured'' over entire sphere

- accumulate strips over 27-day rotation
- hope that not much changes
- fill in poles (somehow)
- decompose w/ spherical harmonics
- coeffs. $\rightarrow A_{I,m}$

Assumptions of the PFSS

• No currents in coronal field (simplest equilibrium)

 $\nabla \times \mathbf{B} = 0 \qquad R_o < r < R_s$

- Field becomes open (radial) @ fixed radius r=R_s
- Not much change during 27-day accumulation

➔ Field actually open will be source of solar wind, less dense & dark in EUX & SXR

WSO - Source Surface Field

0, <u>+</u>1, 2, 5, 10, 20 MicroTesla

 $r = R_{\odot}$

 $r = 2.5 R_{\odot}$

WSO - Source Surface Field

0, <u>+</u>1, 2, 5, 10, 20 MicroTesla

WSO - Source Surface Field

0, <u>+</u>1, 2, 5, 10, 20 MicroTesla

cosmic rays

- Originate far away in galaxy in supernova remnant shocks
- Enter solar system isotropically
- No collisions with SW particles
- Deflected by SW B
 - Advected outward
 - Diffused by B fluctuations
 - Drift:

vol. III fig. 9.8

Effect on cosmic rays

The wind through the cycle

Effect of a ``warped" HCS

Vol. III fig. 8.6

Vol. III fig. 8.7

Vol. III fig. 9.1

The Heliosphere's InterstellarScience May 10, 2012Interaction: No Bow ShockResult

D. J. McComas,^{1,2*} D. Alexashov,³ M. Bzowski,⁴ H. Fahr,⁵ J. Heerikhuisen,⁶ V. Izmodenov,³ M. A. Lee,⁷ E. Möbius,^{7,8} N. Pogorelov,⁶ N. A. Schwadron,⁷ G. P. Zank⁶

Summary

- Corona: because there is heating reaches high T because radiation cannot balance heating so conduction is needed
- More heat → higher density
- Wind: because there is heating advective energy flux balances heating
- Creates heliosphere