

Which topic is (probably, at this point in time) your primary interest?

- 1. Solar physics & other stars
- 2. Heliosphere solar wind
- 3. Earth ionosphere/magnetosphere
- 4. Planetary space physics
- 5. Hummmm.... not sure or something else....

De Magnete 1600 William Gilbert "May the gods damn all such sham, pilfered, distorted works. which do but muddle the minds of students"

Planetary Magnetic Dynamos What are the 3 main ingredients for a planetary dynamo?

Planetary Dynamos

Volume of electrically conducting fluid 1 which is convecting 2 and rotating 3

All planetary objects probably have enough rotation - the presence (or not) of a global magnetic field tells us about 1 and 2

Earth dynamo model -From Glatzmeier and Roberts

Liquid Metallic Hydrogen

	Ganymede	Mercury	Earth	Jupiter	Saturn	Uranus	Neptune
R_p/R_E	0.41	0.38	1	11	9.5	4.0	3.9
R_{core}/R_{P}	0.3	0.6-0.8	0.55	0.9	0.6	0.8	0.8
Magnetic Moment /M _E	5 x 10 ⁻⁴	5 x 10 ⁻⁴	1	20,000	600	50	25

Tilts and Obliquities

Offset Tilted Dipole (poor) Approximation

Magnetic Potential $\mathbf{B} = -grad V$ **3-D Spherical harmonics** $V = R_{\rm p} \sum_{n=1}^{\infty} \sum_{m=0}^{n} \left(\frac{R_{\rm p}}{r}\right)^{n+1} P_n^m(\cos\theta) \left(g_n^m \cos m\lambda + h_n^m \sin m\lambda\right)$ coefficients - constants n=0 functions $P_0^0(\cos\theta) = 1$ Dipole 1 $P_1^0(\cos\theta) = \cos\theta$ **Quadrupole 2** $P_1^1(\cos\theta) = -\sin\theta$ $P_2^0(\cos\theta) = \frac{1}{2}(3\cos^2\theta - 1)$ 3 $P_2^1(\cos\theta) = -3\cos\theta\sin\theta$ 4 $P_2^2(\cos\theta) = 3\sin^2\theta$ $P_3^0(\cos\theta) = \frac{1}{2}(5\cos^3\theta - 3\cos\theta)$ 5 3 5 m=0

Planet	Rcore / Rplanet	Βο [μΤ]	Tilt	Quad / Dipole	
Earth	0.55	31	+9.92°	0.04	
Jupiter	0.84	428	-9.6°	0.10	Dipulai
Saturn	0.6	21	<-1°	0.02	
Uranus	0.7	23	-59°	1.3 🤸	
Neptune	0.8	14	-47°	2.7 🖌	inegulai

Earth's Magnetic Field

When you look closer there's more complexity

Earth's field extrapolated down to the top of the outer core dynamo region

Br through a reversal

t=1.830E+00 (frame 380)

Where are the Earth's magnetic poles and where are they headed? Note that the **north pole is moving towards** the rotation pole, the **south pole is moving away** from the rotation axis...

What's the difference?Magnetic Poles= where B = BrGeomagnetic Poles= best fit dipole

Orbit Insertion Spacecraft & Payload 4th July 2016 SPACECRAFT **DIAMETER: 66 feet** JunoCam 20 meters camera 400 W Power UVS Spin period 30 sec spectrometer Waves Radio & plasma JEDI JIRAM High-energy particles IR spectrometer JADE **Gravity Science** Low-energy particles Magnetometer **MWR** Microwaves

Juno

Jupiter's Magnetic Field

- Juno's first few passes are showing deviations from previous simple models
- Hints that the dynamo region is closer to the surface?

Juno - based magnetic field model

Juno-based magnetic field model

Big N-S asymmetries!

Juno

Earth's South American Anomaly

Juno

Measured gravity field

Molecular hydrogen shell

• No distinct core

Juno

- Heavy elements partially mixed
- Helium raining
 out of outer layer
- All boundaries fuzzy?!

Implications for Dynamo

Earth: Dynamo deep in core – outer field ~dipole

Juno

Glatzmeier 2002

Saturn: Deeper core, zonal flows in resistive layer makes symmetric dipolar field

Glatzmeier 2005

Implications for Dynamo in Rapid Rotator

Juno

How to get basically dipole field with N-S asymmetry?

WHICH HAVE ACTIVE MAGNETIC DYNAMOS?

Why Don't Venus or Mars have Dynamos?

- Enough rotation even for Venus
- Conducting fluid core probably
- Lack of convection in core?
 - If....Mantle convection controls heat flow from core. Then....Lack of plate tectonics suggests less efficient cooling of interior and lower heat flux from core
- 2. No inner core means no latent heat of solidification and no enhancement of lighter material in the outer core

Need geophysics missions that address interior address interior

Stevensen 2010

Moon & Mars: All Crustal Remanent Magnetization

Mars: Weak, irregular field -> bumpy surface + changing topology

MGS mission MAVEN mission

David Brain

Solar Wind Interaction Atmosphere Escape

- Ionization of outer atmosphere
- Plasma-atmosphere interaction
- Similar scale!
- Similar loss! few kg/s
- Comets up to ton/s

Brain et al. 2016

Magnetosphere Sizes

Why to planetary magnetospheres have a bow shock?

What happens to the solar wind at the bow shock?

Chapman-Ferraro Current

- Internal magnetic field pressure <sup>B²/2μ_o
 </sup>
- Balances the solar wind dynamic pressure P_{sw} U²_{sw}
- Assumes northward Interplanetary Magnetic Field – IMF
- Chapman-Ferraro current must provide
 j x B force integrated across magnetopause

Chapman-Ferraro Current

•Creates closed magnetosphere

•Limits size of magnetosphere

•Current pattern over the whole magnetopause.

$$B_{dipole} = B_o (R_p/r)^3$$

SW ram pressure <=> internal magnetic field pressure

$$\rho_{sw} U_{sw}^2 = B_o^2 (R_p/r)^6 / 2\mu_o$$

BUT what about currents at the magnetopause? -> 2B_{dipole}

$$\rho_{sw} U_{sw}^2 = (2B_o)^2 (R_p/r)^6 / 2\mu_o$$

Solve for $r \Rightarrow R_{MP}$

$$\frac{R_{MP} / R_{planet}}{= 2^{1/3} [B_o^2 / 2\mu_o \rho_{sw} U_{sw}^2]^{1/6}}$$

Dipole Magnetic Field in Solar Wind

Chapman-Ferraro Distance SW Ram Pressure \longrightarrow Magnetic Pressure R_{MP} / R_{planet} ~1.2 $\begin{bmatrix} B_o^2 / 2 \mu_o \rho_{sw} V_{sw}^2 \end{bmatrix}^{1/6}$

Walker & Russell 1995
$R_{CF}/R_{p} \sim 1.2 \{B_{o}^{2}/(2 \mu_{o} \rho_{sw} U_{sw}^{2})\}^{1/6}$

Quick chat with your neighbors....

- 1. How does ρ_{sw} vary with distance D from Sun?
- 2. How does U_{SW} vary with distance D from Sun?
- 3. How does $\{1/\rho_{sw} U_{sw}^2\}^{1/6}$ vary with distance?
- 4. Move Earth from 1 AU to 8 AU How big is the magnetosphere?

 $R_{CF}/R_{p} \sim 1.2 \{B_{o}^{2}/(2 \mu_{o} \rho_{sw} U^{2}_{sw})\}^{1/6}$

Quick chat with your neighbors....

- 1. How does ρ_{sw} vary with distance D from Sun? $\sim 1/D^2$
- 2. How does U_{SW} vary with distance D from Sun? ~ constant
- 3. How does $\{1/\rho_{sw} U_{sw}^2\}^{1/6}$ vary with distance?
- 4. Move Earth from 1 AU to 8 AU How big is the magnetosphere?
 x 2

6	
A	
	N N

$$R_{CF}/R_{p} \sim 1.4 \{ B_{o}^{2}/2 \mu_{o} \rho_{sw} V_{sw}^{2} \}^{1/6}$$

1

Mercury

and the second se

Jupiter

Saturn

	ipole Magnetopause	Mercu Earth						
	Mercury	Earth	Jupiter	Saturn	Uranus	Neptune		
B_o surface	0.3	31	430	22	23	14		
	μΤ	μT	μT	μT	μT	μΤ		
R _{CF}	1.4	10	46	20	25	24		Jupite
Calculated	R _M	R _E	RJ	R _s	R _υ	R _N		
R _M Observed	1.4-1.6 R _м	8-12 R _E	63-92 R _J	22-27 R _s	18 R _U	23-26 R _N		Satur

John Spencer (SwRI) Io ejects 1 ton/s volcanic gases Mega-Amp currents couple Io to Jupiter

Small Magnetospheres

Mercury

Mariner 10

In solar wind

MESSENGER

No atmosphere

Ganymede

Galileo In Jupiter m'sphere Atmospheric aurora

Jia et al. 2014, 2015

B_{surface} ~ 1/100 Earth

Bebi Colombo

JUICE **Earth Diameter**

Mercury

- Small magnetosphere
- No atmosphere/ionosphere
- Currently close via crust
- Very rapid Dungey cycle
- Sputtered Na⁺ escape

Extreme solar wind conditions -> exposed planet

Slavin et al.

Dynamics

Which Form of Coupling Dominates -> Controls Dynamics

Earth

* Reconnection-Driven Global Circulation

Open Magnetosphere

Dungey Cycle

Dynamics at Earth driven by the solar wind coupling the Sun's magnetic field to the Earth's field

- Variable opening & closing rates
- Must be equal over time to conserve magnetic flux

Plasmapause = boundary between corotation and convection

This is the conventional E-J approach. See Parker 1996; Vasyliunas 2005,11 for B-V approach

The Dungey Cycle Solar wind driven magnetospheric convection*

 $\mathbf{E}_{\text{convection}} = -\zeta \mathbf{V}_{\text{SW}} \mathbf{X} \mathbf{B}_{\text{SW}}$

 ζ ~ efficiency of reconnection ~10-20%

crude approximation!!

Ε

E_{conv}~ constant in m'sphere

V_{convection}

 $\sim \zeta V_{SW} (R/R_{MP})^3$

(where 3 power assumes a dipole in reality, the flow is not uniform and the power somewhat less)

(*strictly speaking not convection but advection or circulation)

 $V_{co} \sim \Omega \times R$

V_{convection}

 $\sim \zeta V_{SW} (R/R_{MP})^3$

Fraction of planetary magnetosphere that is rotation dominated....

- increases with planetary spin
- increases with field strength
- decreases with solar wind strength

Kivelson 2007

Solar-wind vs. Rotation-dominated magnetospheres

Assumptions:

- 1. Planet's rotation perfectly coupled to magnetosphere
- 2. (Large-scale) Reconnection drives solar wind interaction

Dynamics

Dayside magnetopause

- Response to B_{SW}
 direction
- Solar wind ram pressure

Tail Reconnection

 Depends on recent history of dayside reconnection and state of plasmasheet

Reality = Messy & 3D

Calculate Transit Time

VS.

oon Nagnetopaus Cusp

Earth

Time for Solar Wind to Flow Nose-Terminator

V_{solar wind} ~ 400 km/s

Jupiter

MP~100 R_J 1 R_J~72000 km

MP~10 R_E 1 R_E~6400 km

Earth vs. Jupiter

10 R_E <3 minutes

Bob McPherron Margy Kivelson Time for Solar Wind to Flow Nose-Terminator

V_{solar wind} ~ 400 km/s

Probability of B_{IMF} staying $B_z > 0$ or $B_z < 0$ (i.e. N or S) for 5 hours is ~10⁻³ 100 R_J ~ 5 hours

McComas & Bagenal 2007

Earth vs. Jupiter

10 R_E <3 minutes

100 R_J ~ 5 hours

Time for Solar Wind to Flow Nose-Terminator $V_{solar wind} \sim 400 \text{ km/s}$

10% reconnection efficiency -> equatorward drift ~40 km/s

15 R_E ÷ 40 km/s = **40 mins**

150-200 R_J ÷ 40 km/s = **75-100 hours**

Delamere & Bagenal 2013 Masters 2017

- Not open Dungey cycle
- Viscous interaction
- Shear instabilities
- Small-scale, intermittant reconnection

• Boundary layers

"Candy wrapper"

Plasma Sources

Plasma Sources

	Mercury	Earth	Jupiter	Saturn	Uranus	Neptune
N _{max} cm ⁻³	~1	1- 4000	>3000	~100	~3	~2
Comp- osition	H+ Solar Wind	O+ H+ lono- sphere	On+ Sn+	O+ H ₂ O+ H+ Enceladus	H+ Iono- sphere	H+ N+ Triton Iono- sphere
Source kg / s	?	5	700- 1200	70- 200	~0.02	~0.2

Earth Sources of Plasma (5 kg/s): Solar Wind + ionosphere mixed (over the poles) into magnetotail and convected sunward

Earth Plasma Flux 5 kg/s

lo Plasma torus

- Total mass 2 Mton
- Source 1 ton/s
- Replaced in 50 days

- Electron impact excitation
- ~2 TerraWatts UV emission
- Ion composition, electron temperature
- Torus structure & Variability
- Physical chemistry model

- Strong electrodynamic interaction
- Mega-amp currents between Io and Jupiter
- Plasma interaction with lo's atmosphere
- Heated atmosphere

escapes

~20% plasma source local

Ion Pick Up

- The magnetic field couples the plasma to the spinning planet
- Ion gains large gyromotion -> heat

Radial Transport

In rotating magnetosphere: If fluxtube A contains more mass than B – they interchange

Margy Kivelson

Bagenal 1994

Coupling the Plasma to the Flywheel

- As plasma from lo moves outwards its rotation decreases (conservation of angular momentum)
- Sub-corotating plasma pulls back the magnetic field
- Curl B -> radial current J_r
- $J_r \times B$ force enforces rotation

Field-aligned currents couple magnetosphere to Jupiter's rotation

Cowley & Bunce 2001

How is information transmitted along magnetic field lines?

Alfven waves!

Communication breaks down ~25R_J. Magnetosphere & atmosphere stop talking > 60 R_J

Aurora

The aurora is the signature of Jupiter's attempt to spin up its magnetosphere

Parallel electric fields: potential layers, $\phi_{||}$, "double layers"

Hubble Space Telescope – Jon Nichols

Jupiter's 3 Types of Aurora

Steady Main Auroral Oval

Variable Polar Aurora

Aurora associated with moons

Satellite auroral emissions

- Plasma-moon electrodynamic interaction
- Mega-amp current systems
- Analogous to Earth auroral processes

Papers by Su, Ergun, Lysak, Hess, Bonfond

Main Aurora

- Shape constant, fixed in magnetic co-ordinates
- Magnetic anomaly in north
- Steady intensity

• ~1° Narrow Clarke et al., Grodent et al. HST

Jupiter's Aurora: Structured & Dynamic

JRAM UVS

Juno UVS

Same region – very different structure in UV vs. IR

Reveals energy of bombarding electrons & atmospheric chemistry

Gerard et al. 2018

Juno is testing ideas of how charged particles that bombard Jupiter's atmosphere are accelerated

Alfven Wave Heating – Both Ions and Electrons

Saur et al. 2018

Mauk et al. 2018

- System quasi-stable?
- Strong coupling currents unstable?
- Fluxtube interchange non-continuous – local force imbalance
- Turbulence cascades to small scales?
- Stochastic accelerations

Vasyliunas Cycle driven by centrifugal forces

Inward Injection Plasmoid Ejection

Vasyliunas Cowley et al. Southwood & Kivelson

Delamere & Bagenal 2013 Masters 2017

Models Suggest Greater Complexity

GAMERA Model

Binzheng Zhang et al. (2021)

GAMERA Model

Feng et al. 2023

91

Is Jupiter Really Just a Colossal Comet?

Delamere & Bagenal 2013

Uranus & Neptune They're Totally Weird!

Uranus and Neptune have much less mass

- >Lower pressures
- ➢No metallic hydrogen

Weak & irregular magnetic fields produced in water layer, deep below gas envelope

Need to go back to Uranus & Neptune

• Voyager got quick glipse!

- Saw irregular, changing field
- How do m'spheres respond to solar wind?

Hints of aurora with HST

Lamy et al. 2017

Explore weird configurations at different seasons

- Full coverage from orbit
- Modern instrumentation
- Onboard data-processing

Comparative Planetary Magnetospheres

	Ganymede	Mercury	Earth	Jupiter	Saturn	Uranus	Neptune	Magi	
	6							Dipole	Earth
Moment /M _E	5x10⁻⁴	5x10 ⁻⁴	1	20,000	600	50	25		Jupiter
R _{M'pause} /R _P	1.8	1.5	8-12	63-92	22-27	18	23-26		Saturn
Coupling Process	Ionosphere Jup. M'Sphere	Ionosphere Magnetosphere Solar Wind	Ionosphere Magnetosphere Solar Wind	lonosphere Magnetosphere Solar Wind	lonosphere Magnetosphere Solar Wind	Ionosphere Magnetosphere Solar Wind	Ionosphere Magnetosphere Solar Wind ??	Boym	And
Timescale	mins	mins	hrs	wks	days	??	??	Solar Wind	Plasma

topause

Mercury

ESA's JUICE Mission

Particle & field measurements key for science goals

Launched April 2023 Orbits Ganymede in 2030s

NASA's *Europa Clipper* Mission

Particle & field measurements key for science goals

- What's the brown gunk?
 - How thick is ice?
 - Does water reach surface?
- Liquid Ocean Under Ice What's in the water??

Launch Oct 2024

Planetary Magnetic Dynamos – Outstanding issues:

- What controls amount of non-dipole field?
- Dynamos of Earth, Jupiter, Sun: similarities / differences?
- What controls variation in time?
- Why do some dynamos die out?

Planetary Magnetospheres Summary

- Diverse planetary magnetic fields & magnetospheres
- Earth, Mercury, Ganymede magnetospheres driven by reconnection
- Jupiter & Saturn driven by rotation & internal sources of plasma
- Uranus & Neptune are complex need to be explored!

