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1. Habitability



QU estion What is life? What are its essential characteristics?

You have 3 minutes




Requirements for life

All ~8.7 million species of life on Earth require three things:

Building blocks Source of energy Liquid water
C,H,N,O,PS sunlight good solvent
chemical reactions ‘Polar’ molecule

heat



Liquid water requires the right temperature and pressure
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Habitable zone

Habitable Zone of Earths Solar System

)

Solar System

Liquid water requires Tsyrrace > ~273 K

Recall:
S 1-A4
Ts4urf ace = (1 +7) T€4f fective T;f fective = geq g2

So solar luminosity, albedo, and amount of greenhouse gases all play a role in where water can be liquid

‘Habitable Zone' refers to the distance from a star, d, where water might exist as liquid on a planetary surface



Habitable zone

Estimating the HZ distance depends upon the assumptions you make

Inner Edge  Outer Edge Authors
A\8)! (AU)

Dole, 1964
Hart et al., 1979
Kasting et al., 1993

Abe et al., 2011
Pierrehumbert and Gaidos, 2011
Kopparapu et al., 2013

Ramirez and Kaltenegger, 2017






Bacteria Archaea Eukarya

purple halobacterium slime animals
bacteria methano-
bacterium

fungi

cyano- \ gram-positive
bacteria \ bacteria methano-
coccus

entamoebae

plants

ciliates

When
* Fossils by 3.5 Gya
» |sotope signatures back to 3.85 Gya
» Started quickly after immpact bombardment

flagellates

Where

« Tree of life - common ancestor

* Microbes near seafloor vents are good option

« Seafloor environment is harsh but sheltered

« Today we find life nearly everywhere we look,
Including extreme environments

common ancestor

How?
» Miller-Urey experiment - sparking early Earth
chemicals yields organic molecules
« Other scenarios are promising, too




Mars

Abundant evidence for stable past liquid surface water
- Mars was habitable
- Evidence for past life may be present, and more accessible
than at other solar system objects

Is life active today?
« Controversial evidence for atmospheric methane
« Suggestions for past subsurface hydrothermal systems, with
speculation they could exist today




Requirements for life may be met at the surface

» No liquid water, but lakes of liquid methane and ethane
 Methane and ethane are not polar, not good solvents
* Rich atmospheric chemistry, with organic compounds

The subsurface may be a better option

Future Titan may be better!




Requirements for life are met

* Liquid water under icy shells
* Heat source from tides for many

Accessibility is an issue

 These may be the most likely places to find
other life in our solar system

But getting to it is hard (geyser exception?)
Icy moons in other solar systems can only be
explored remotely




lcy Moons

* Qutside "habitable zone"
* Most likely place to find extra-terrestrial life 5
LS .

Mass (in Daltons)




Europa NASA's Europa

Clipper Mission

Ice Covering

What's the brown gunk?
How thick is ice?

* Does water reach surface?
What's in the water??

if Life, what kind of Life??  Launch Oct 2024
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3. Exoplanets and Habitabllity



Stellar habitable zones

Optimistic Habitable Zone
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Exoplanet detection methods

Transit

14

tirme '1:‘:|'II'E—: + JD 2451751 .'3.._,1:_]

« Size
* Orbital period & distance
* Atmosphere

« Large, close planets
« Systems edge-on as viewed
from Earth

stellar motion caused
by tug of planet

starlight
redshifted

Radial Velocity
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Large, close planets
Systems edge-on as viewed from Earth

Direct Imaging

~Mass, ~size
Orbital period & distance
Atmosphere

Large, bright, distant
planets

Systems face-on as
viewed from Earth



Known exoplanets

Planetary Radius (Rjup)
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exoplanets.eu

Potentially habitable exoplanets
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rappist-1

39.5 ly away

7-planet system, all roughly Earth-sized, including 3 in the “Habitable Zone”
Compact system - could see surface features on other planets!
Planets all in resonance with each other

Discovered: 2015-2017 TRAPPIST-1 System
Orbital period: 1.5-18.8 days Q €
Orbital distance: .01-.06 AU

= \b\

Size: ~0.7-1.1 Mg

Inner Solar System

{;ﬂ 3 of
€ ‘ W

Mercury Venus Earth

[llustration




Proxima Centauri b

4.25 ly away
Earth-mass exoplanet orbiting our closest star

Discovered: August 2016 via Doppler technique
Orbital period: 11 days

Orbital distance: .05 AU
Effective Temperature: ~234 K
Mass: ~1.27 Mg

Proximab

(artistic representation)
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Atmospheric spectra
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4. Planetary Influence on Habitability



QueStiOn What properties of a planet influence its habitability?




5. Stellar Influences on Habitability

0237 0238



*

Photons

« Total luminosity (warms planet’s surface)
« UV (drives chemistry, damages DNA)
« EUV/ Xray (upper atmosphere heating, ionization, escape)

Particles

« Stellar wind (drives escape, deposits particles)
« Stellar energetic particles (heating and escape, chemistry,
radiation)

Fields

« Interplanetary magnetic field*
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Particle inputs for Earth
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There are now many interdisciplinary
conferences about exoplanets and
habitability.

Few heliophysicists attend.

o 2026 2 geOChemlcal ‘) EAG

18-23 August 5! 9 of Coochermi

My Goldschmidt

Exoplanets: Compositions, Mineralogy, Evolution

This is a two-day, in-person workshop {Aug 17-18) that comprises the short course portion of the Reviews in Mineralogy and
Geochemistry (RiMG) volume, “Exoplanets: Compositions, Mineralogy, Evolution,” edited by Natalie Hinkel, Keith Putirka, and
Siyi Xu. Because the study of exoplanets lies at the boundary of geclogy and astronomy, our goal is to expand communications
between geclogists — especially mineralogists and petrologists — and astronomers. Astronomers are able to measure the radius,
mass, and hence density of small exoplanets as current and upcoming space missions (e.g., JWST and Roman) are providing
measurements of exoplanetary atmospheric compositions. Astronomers and geologists have also used the compositions of
nearby Sun-like stars and polluted white dwarf stars to translate these into mineral proportions and rock types of their small
planets’ interiors, which can be used to hypothesize exoplanetary tectonic behavior. The ability to estimate exoplanet bulk
compositions and densities provides extraordinary opportunities for mineralogists, petrologists and geochemists to profoundly
expand on exoplanet characterization. The hope for our workshop is to spur conversations and initiate collaborations, as well as
explain the current state of the field and teach one another about our respective fields. Registration fees include lunch and
coffee for both days as well as a copy of the RIMG volume (early career students who would prefer a physical softbound copy, in
addition to online access, should register under the full price).

The following is a list of the workshop presentations and associated RIMG chapters. The schedule will allow time for a 20 min
presentation for each topic followed by a 20 min Q&A, in addition to open discussions at the end of both days:

+ Host Stars and How Their Compaositions Influence Exoplanets (Hinkel, Youngblood, & Soares-Furtado)
» Chemistry in Protoplanetary Disks (Zhang & Trapman)

* Planet Formation (Mordasini & Burn)

+ Meteorites and Planetary Formation (Jones)

* The Evolution and Delivery of Rocky Extra-Solar Materials to White Dwarfs (Veras, Mustill, & Bonsor)
+ The Chemistry of Extra-Solar Materials from White Dwarf Planetary Systems (Xu, Rogers, & Blouin)

+ Exoplanet Mineralogy: Methods & Error Analysis (Putirka)

+ Exoplanetary Mantles, Melts, and Crusts (Shorttle & Sossi)

+ A Beginner's Guide to Tectonics — Plate and Otherwise (Putirka)

+ A Framework of Deep Volatile Cycles in Rocky Exoplanets (Dasgupta, Pathak, & Maurice)

+ Exoplanetary Magnetic Fields (Brain & Kaao)

* Transiting Exoplanet Atmospheres in the Era of JWST (Kempton & Knutson)

+ An Overview of Exoplanet Biosignatures (Schwieterman & Leung)

+ The Early Earth as an Analogue for Exoplanetary Biogeochemistry (Stueeken, Olsen, Moore, & Foley)

* Exoplanet Geology: What Can We Learn From Current and Future Observations? (Foley)




Important concept interlude

The upper atmosphere
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Fig. 5.2. Total number density and number densities of various con-
stituents for mean atmospheres (from COSPAR, 1972).

Look at the decline of each species with altitude. There’s a trend!



Important concept: Diffusive separation

« At high altitudes each species has its own
characteristic vertical density structure

(Hi= *T/m;q)

Heavy Light

species species Light / Heavy

~200 km ----}--. exobase
» With less frequent collisions than the lower
atmosphere, heavier species experience a

stronger gravitational force and tend to ‘sink’

km)

N ~100 km --F---. homopause

» This leaves the uppermost portions of an
atmosphere enriched in lighter species

surface

* This also means that the ‘mixing ratio’ In n

(relative abundance) for each species varies _ — _
with altitude in this region Log Density Mixing Ratio



Diffusive separation and atmospheric escape

 |sotopes of a species differ only in mass —
otherwise they behave in all the same ways

» The uppermost parts of atmospheres, where
escape occurs are enriched in light isotopes

> Light isotopes should escape more readily
than heavy isotopes

» Light isotopes also escape more readily due
to the smaller mass

« Atmospheres where escape has been an
important process should be enriched in
heavy isotopes
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