Planetary Habitability II

(Atmospheric Escape)

Dave Brain U. Colorado

Heliophysics Summer School 2024

19 Aug 2024

October 2015

 \rightarrow

Dave: "Can you make a graphic that looks something like this?" NASA: "Yes."

1. General Requirements for Atmospheric Escape

Question

What requirements for a particle to escape from a planet's atmosphere?

Requirements for an atmospheric particle to escape

1. Escape Energy

$$\frac{1}{2}mv^{2} = \frac{GMm}{r}$$
$$\Rightarrow v = \sqrt{\frac{2GM}{r}}$$

	Venus	Earth	Mars
V _{esc}	10 km/s	11 km/s	5 km/s
E(H+)	0.5 eV	0.6 eV	0.1 eV
E(O)	9 eV	10 eV	2 eV

- 2. Directed Upward
- 3. No Collisions

Escape from exobase region

$$\frac{kT}{mg} = \frac{1}{nS}$$

Reservoirs for escape

<u>Thermosphere</u>	<u>lonosphere</u>	<u>Exosphere</u>	
T(z)	Density << neutral density	"collisionless"	
Diffusive separation	Chapman peaks from incident energy	Ballistic trajectories	
V: ~120-250 km	V: ~120-300 km	V: ~250-8,000 km	
CO ₂ , CO, O, N ₂	O ₂ +, O+, H+	H	
E: ~85-500 km	E: ~75-1000 km	E: ~500-10,000 km	
O ₂ , He, N ₂	NO ⁺ , O ⁺ , H ⁺	H, (He, CO ₂ , O)	
M: ~80-200 km	M: ~80-200 km	M: ~200-30,000 km	
CO ₂ , N ₂ , CO	O ₂ +, O+, H+	H, (O)	

2. Atmospheric Escape Processes

Our star drives atmospheric escape (actually many processes!)

Extreme Ultraviolet

Solar Wind

Ionosphere

Extended Atmosphere

Escape processes

There are as many as 10 distinct escape processes, depending upon how you count...

...and as few as four!

that looks ominous!

0

0

0

Thermal processes

Courtesy M. Chaffin

 $\lambda_{esc} < \sim 3$

Thermal escape or Jeans escape or photoevaporation?

Hydrodynamic escape

or Blowoff / outflow

or photoevaporation

 $\lambda_{esc} = \frac{E_{escape}}{E_{thermal}}$

$$\Phi = \frac{n_{exo}v_{th}}{2\sqrt{\pi}}(1+\lambda_{esc})e^{-\lambda_{esc}}$$

NASA / ESA / Vidal-Madjar

Non-thermal processes

Photochemical escape

- Exothermic chemical reactions provide energy for escape
- Typical reactions: $O_2 + h\nu \rightarrow O_2^+ + e^-$

$$O_2^+ + e^- \rightarrow O^* + O^*$$

Sputtering

- Particles can be splashed out of atmospheres
- Requires incident solar wind or atmospheric particle!
- Process has never been unambiguously observed

lon escape

- Sunlight (or collisions) ionize a high-altitude neutral particle
- Electric fields accelerate the particle, giving it escape velocity
- Magnetic fields influence the trajectory of the particle

More on ion escape

- Electric fields accelerate charged particles
- Can loosely identify pickup, Hall, and pressure gradient escape
- Highlights that *combinations* of mechanisms can accelerate ions

A few comments

- Different processes are important for different species
- The importance of a process can vary with time
- Not all processes operate at a given planet
- Some processes fractionate an atmosphere, and others do not
- Magnetic fields should directly impact some processes, while other processes are indirectly impacted (or not impacted at all)

Question

Suppose a planet loses oxygen atoms at a rate of 10²⁶ s⁻¹.

How much atmosphere (in bars) would be lost in 4 Gy at this rate?

Helpful information:

R_P ~ 3400 km

 $g_{P} \sim 3.8 \text{ m/s}^{2}$

1 bar = 10^5 Pascals Atomic number of oxygen = 81 year ~ π x 10⁷ s

 $\Delta P = \Delta \frac{F}{A} = \frac{\Delta F}{A} = \frac{\Delta m g_P}{A} = \frac{\Phi m_0 \Delta t g_P}{4 \pi R_P^2} = \sim 100 \text{ mbar}$

Is this enough to change climate? Is it a lot? Is it a little?

3. Observations of Escape

Atmospheric escape from Mars

Atmospheric escape from Venus

Thermal Escape (H)

Photochemical Escape (O)

Sputtering Escape (N,O,C,etc.) ~??? s⁻¹

Ion Escape (O⁺, O₂⁺, CO₂⁺, H⁺) ~5 x 10²⁴ s⁻¹

Fedorov et al., 2011

Atmospheric escape from Earth

Thermal Escape (H) ~ 10^{26} s⁻¹

Photochemical Escape (N,O)

Sputtering Escape (N,O,C,etc.)

Ion Escape (O⁺, H⁺) ~10²⁵ - 10²⁶ s⁻¹

Variability in escape

Strangeway et al., 2005

Persson et al., 2018

Halekas, 2017

4. Influence of Magnetic Fields

Question

How should planetary magnetic fields influence atmospheric escape?

- 1. A planet's magnetic field should reduce escape rates
- 2. A planet's magnetic field should increase escape rates
- 3. A planet's magnetic field shouldn't influence escape rates
- 4. It depends
- 5. Look! A jackalope!

Arguments for and against

NASA SVS

SOHO / LASCO / EIT

NASA / ESA

Magnetic fields prevent stellar wind particles from stripping an atmosphere

Magnetic fields transmit energy from the solar wind to the atmosphere, driving escape

Approach 1: Compare Venus, Earth, and Mars

Courtesy L. Mays - GSFC

Courtesy R. Ramstad

The three planets don't experience the same set of driving conditions

Approach 1: Compare Venus, Earth, and Mars

Ramstad and Barabash, 2020

Approach 2: Study Mars

NASA / GSFC

Brain et al., 2017 After Brain et al., 2002

Study Mars interlude: Mars is actually pretty interesting

Study Mars interlude: Mars is actually pretty interesting

Diffuse Aurora

Approach 2: Study Mars

Weber et al., 2021

Approach 3: Use models

Egan et al., 2019

Egan et al., 2019

5. Next Steps

A recently funded effort will model planetary atmospheric escape for ~200 star-planet combinations

The effort is called: "Retention of Habitable Atmospheres in Planetary Systems" Home Science Publications Team News Workshop Outreach

MAGNETIC FIELDS, ATMOSPHERES AND THE CONNECTION TO HABITABILITY

The effort is part of the MACH Center

DO HABITABLE WORLDS REQUIRE MAGNETIC FIELDS?

This simple six-word question poses a relevant and timely challenge for the field of Heliophysics. The Magnetic fields, Atmospheres, and the Connection to Habitability (MACH) DRIVE Science Center (DSC) will determine whether a global magnetic field is essential for a planet to retain a habitable atmosphere.

mach-center.org

Science Question

How do the properties of a planet and its host star influence its ability to retain an atmosphere?

Laboratory for Atmospheric and Space Physics University of Colorado **Boulder**

Earth
Solar system
Extrasolar

	Team Member	Institution	Role	Responsibilities
	Dave Brain	U. Colorado	PI	Direction of team; Model validation; Web interface; Scaling laws
_	Michael Chaffin	U. Colorado	Co-I	Thermal and photochemical escape modeling
	Ofer Cohen	UMass Lowell	Co-I	Stellar wind and IMF modeling
	Kevin France	U. Colorado	Co-I	Stellar EUV spectra creation
	Katherine Garcia-Sage	NASA GSFC	Co-I	GITM upper atmosphere modeling
	Alex Glocer	NASA GSFC	Co-I	PLANET-ITTR upper atmosphere modeling
	Yingjuan Ma	UCLA	Co-I	BATS-R-US magnetosphere modeling
	Rachel Osten	STSci	Co-I	Stellar flare spectra
\land	Aline Vidotto	U. Leiden	Co-I	Transit light curve pipeline
	Zachory Berta- Thompson	U. Colorado	Coll.	Transit light curve advice and support
	Jean-Yves Chaufray	LATMOS	Coll.	Thermal escape modeling and support
	Tom Cravens	U. Kansas	Coll.	Photochemical escape estimates; Model validation
	Yoshifumi Futaana	IRF Kiruna	Coll.	Model validation for Venus-like planets
	Mats Holmstrom	IRF Kiruna	Coll.	FLASH modeling; Model validation
	Riku Jarvinen	FMI	Coll.	RHybrid modeling support
	Lynn Kistler	UNH	Coll.	Model validation for Earth-like planets
	Ravi Kopparapu	NASA GSFC	Coll.	Connection to CHAMPS; exoplanet interpretation
	Francois Leblanc	LATMOS	Coll.	Exosphere/sputtering modeling; Model validation
	Dan Marsh	NCAR	Coll.	Upper atmosphere modeling advice and support
	Aimee Merkel	U. Colorado	Coll.	Model validation for Mercury-like planets; Web interface
	Laura Peticolas	Sonoma State	Coll.	Broadening Impacts support (funding sought separately)
	Robin Ramstad	U. Colorado	Coll.	Model validation for Mars- and Venus-like planets; Scaling laws
	Shotaro Sakai	Tohoku U.	Coll.	REPPU-Planets modeling
	Kanako Seki	U. Tokyo	Coll.	TET & REPPU-Planets modeling support; Model validation
	Kevin Stevenson	JHU-APL	Coll.	Connection to CHAMPS; exoplanet case selection
	Robert Strangeway	UCLA	Coll.	Model validation for Earth-like planets
	Naoki Terada	Tohoku U.	Coll.	TET & TEDSMC modeling; REPPU-Planets support

04ZZ

Table 3: Team member science responsibilities

1. Compute inputs for atmospheric escape for an ensemble of star-planet scenarios

2. Improve and link models for atmospheric escape from any planet

3. Construct a multi-dimensional model library for atmospheric escape

Surface pressure 4. Apply the model library to understand the connection between atmospheric escape, habitability, and observations

42

0.2

FUV flu

9001

Earth

4

Mercury-like → Venus-like

Multiple competing models allow us to estimate uncertainties

"Mars as an exoplanet"

Assume present-day Mars orbits Barnard's star at a distance that receives the same stellar flux as Mars does in our own solar system. How would atmospheric escape change?

"Mars as an exoplanet"

How would the thermosphere change?

Would hydrodynamic escape occur?

Escape parameter: ~2.5

- 1. 1 fluid, isothermal
- 2. 1 fluid, no conduction or diffusion
- 3. 1 fluid, conduction but no diffusion
- 4. Multispecies, 3 fluid, conduction, radiative cooling, eddy and molecular diffusion

"Mars as an exoplanet"

125

100

75 50

25

10

0

X [Rp]

20

REPPU-Planets

20 150 b: |B| [nT] 15 10 100 5 0 -5 50 -10 -15 -20 0 S. Sakai -20-15-10 -5 0 5 10 15 20 20 B(nT) 150 15 10 100 Y [R] 50 -10 -15 -20-20 -15 -10 -5 0 5 10 15 20 **X**[**R**] Y. Ma B [nT] 20 - 150

BATS-R-US

MAESTRO

What is the ion escape flux?

$$\Phi_{0^+} = 6.7 \times 10^{27}$$

 $\Phi_{C^+} = 3.5 \times 10^{29}$

$$\Phi_{0^+} = 3.2 \times 10^{28}$$

 $\Phi_{C^+} = 6.4 \times 10^{29}$

$$\Phi_{0^+} = 1.3 \times 10^{28}$$

 $\Phi_{C^+} = 1.1 \times 10^{29}$

R. Sakata

10 -

0

-10 -

-20

-20

-10

Y [Rp]

0436

How does ion escape scale with ion production?

We model umagnetized Earth for different ion production rates

P. Hinton

How does ion escape scale with ion production?

If ion production is low enough, Earth's atmosphere accumulates hydrogen, or even total mass

How does ion escape scale with ion production?

Negative feedback may result, so that atmospheres try to balance mass loss and accumulation