
Q: Why does the Sun have a 
Corona?  A Wind?
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The corona – a dramatic view

July 2, 2019 – Cerro Tololo Inter-American Observatory, Chile
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Coronal (EUV) imaging – the basics:
•what you see is all the same T (1.5 x 106 K)
• bright = dense plasma – ne
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• heating can* make plasma dense & thus bright
• heating is evidently magnetic

* if magnetic field lines are closed – magnetic bottle
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radiation

B large enough 
to restrict 
plasma motion: 
only along field 
lines

AR

heat in
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Radiative losses
per volume:

Vol. I: Eq. (8.6)

loss @ fixed 
pressure

unstable

0d picture: 
balance between 
heat & radiation
@ fixed pressure

balance
heat

104 K 105 106 1074



radiation
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Need 1d: 
include thermal 
conduction to 
move heat to 

chromosphere
Tmax ~ (pL)

1/3 ~ h2/7L4/7
p ~ h6/7L5/7

balance:
(RTV)

I ~ ne
2 ~ h8/7L2/7

more heating (h)
è little hotter

much brighter corona: h > rad
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corona: h > radTR: h < rad

AIA 1600 AIA 211 
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Below the TR – hairy details
Vernazza et al. 1981

• Radiation: not 
optically thin

• Ionization level 
varies with T

photosphere

temperature
minimum
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Heating is Magnetic
Pevtsov et al. 2003

XBPs

ARs
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Field 
varies –
corona 
varies

GOES 1-8 Å

×50
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GOES 1-8 Å April 2002

X-rays: 
highly 
variable –
flares

do smaller 
flares heat 
the corona?
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Corona produces EUV & X-ray
Vol. III, fig. 10.1
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Chamberlin et al. 2009

EVE
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Corona produces µ-waves

F10.7 = flux @ l = 10.7 cm (f=2.8 GHz)Hathaway 2010 
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heat in

radiation

CH

outflow

Advective energy loss –

€ 

1
2 ρvv

2 + ρvw(ρ)

B large enough 
to restrict 
plasma motion: 
only along field 
lines

€ 

w(ρ)∝ γ
γ −1

ργ−1

>> radiative loss

specific enthalpy

Wind: from 
open flux
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heat in = Q

outflows

A(s)

€ 

Aρv 1
2 v

2 + w(ρ) +Ψ(s)[ ]Energy loss = = Q = fixed & given

mass loss fixed & unknown

€ 

w(ρ)∝ γ
γ −1

ργ−1 → cs
2 ln(ρ) + const.

Simple case: Isothermal … 

€ 

γ →1

€ 

→ 1
2 v

2 − cs
2 ln(v) − cs

2 ln[A(s)]+Ψ(s) = const.

€ 

= f (v) + g(s) = const.

vcs

f(v)

Bernoulli’s law: 

€ 

Q
˙ M 

= const.
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vcs

f(v)

€ 

f (v) = 1
2 v

2 − cs
2 ln(v)

€ 

g(r) = −2cs
2 ln(r) − Rovesc

2

2r

tube: 
cone w/ vertical axis

A(s) ~ s2 s = r

s

A(s)

€ 

g(s) = −cs
2 ln[A(s)] − Rovesc

2

2r(s)
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€ 

F(v,r) = f (v) + g(r) =
Q
˙ M 

= const.
vcs

f(v)

€ 

f (v) = 1
2 v

2 − cs
2 ln(v)

€ 

g(r) = −2cs
2 ln(r) − Rovesc

2

2r

r

g(r) Ro vesc
2/4cs

2

tube: 
cone w/ vertical axis

A(s) ~ s2 s = r

subsonic flow

transonic flow

= rx
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tube: 
horizontal nozzle 

€ 

g(s) = −cs
2 ln[A(s)]+Ψ(s)

Y(s) = const.

€ 

g(s) = −cs
2 ln[A(s)]

s

cs

subsonic flow

transonic flow

throat

saddle @ max. g(s)
@ throat of nozzle

v

max. inflow speed

admissible inflow speeds
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tube: 
horizontal nozzle 

€ 

g(s) = −cs
2 ln[A(s)]+Ψ(s)

Y(s) = const.

€ 

g(s) = −cs
2 ln[A(s)]

s

cs

subsonic flow

v
Speeds up 
approaching 
constriction

Slows down 
in flaring exit

wo wexit

Inflow = mass loss rate

set by 
back-pressure 

wexit
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tube: 
horizontal nozzle 

€ 

g(s) = −cs
2 ln[A(s)]+Ψ(s)

Y(s) = const.

€ 

g(s) = −cs
2 ln[A(s)]

s

cs

v
Speeds up 
approaching 
constriction

Speeds up in 
flaring exit

wo

transonic flow

max. inflow speed

occurs for 
back-pressure 
insufficient to 
keep flow 
sub-sonic
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€ 

Fx = f (cs) + g rx( ) =
Q
˙ M 

vcs

f(v)

€ 

f (v) = 1
2 v

2 − cs
2 ln(v)

€ 

g(r) = −2cs
2 ln(r) − Rovesc

2

2r

r

g(r) rx

transonic flow

const. fixed by need to become transonic when 
external back-pressure is insufficient – i.e. 
vacuum around sun
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transonic flow

const. fixed by need to become transonic when 
external back-pressure is insufficient – i.e. 
vacuum around sun

è Mass loss rate is set 
by heating rate*

è density everywhere 
is set by mass loss rate

è density @ base is 
set by heating rate*…

… and it will be lower 
than density on closed 
loops w/ same heating 
(Why?)

€ 

Fx = f (cs) + g rx( ) =
Q
˙ M 

€ 

˙ M =
Q
Fx

€ 

ρ(rx ) =
˙ M 

A(rx )cs

* … and geometry of flux tube A(s) 22



heat in

radiation

B large enough 
to restrict 
plasma motion: 
only along field 
lines

AR

heat in

outflow

CH

Different coronae 
from different 
magnetic topology: 
open vs. closed
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Why are some field lines open & others closed?

Magnetic field dominates: 
nothing capable of countering its force so…

€ 

(∇ × B) × B = 0
⇒ ∇× B = αB (i.e. ||B)

simplest version:   a = 0   (by fiat)

€ 

⇒ ∇× B = 0 ⇒ B = −∇χ potential field
(cf. electrostatics)

€ 

∇⋅ B = 0 ⇒ ∇2χ = 0 harmonic potential
(cf. electrostatics in vacuum)
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€ 

B = −∇χ & ∇2χ = 0 potential field outside 
sphere   r=Ro

r=Ro

r=Rs
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€ 

B = −∇χ & ∇2χ = 0 potential field outside 
sphere   r=Ro

r=Ro

r=Rs

€ 

(Bθ ,Bϕ ) = 0 ⇒
∂χ
∂θ
,∂χ
∂ϕ

' 

( 
) 

* 

+ 
, = 0

⇒ χ(Rs,θ,ϕ) = 0

Field: purely radial @ r=Rs (by fiat)

€ 

Br(Ro,θ,ϕ) = −
∂χ
∂r r=Ro

Dirichlet

Observed  (Neumann)

  

€ 

χ(r,θ,ϕ) = A,m
,m
∑ Rs

r
& 

' 
( 

) 

* 
+ 
+1

−
r
Rs

& 

' 
( 

) 

* 
+ 

- 

. 
/ 
/ 

0 

1 
2 
2 
Y,m (θ,ϕ)

  

€ 

Br(Ro,θ,ϕ) =
A,m
Rs,m

∑ ( +1) Rs

Ro

% 

& 
' 

( 

) 
* 

+2

+ 
Ro

Rs

% 

& 
' 

( 

) 
* 

−1, 

- 
. 
. 

/ 

0 
1 
1 
Y,m (θ,ϕ)

• Observe Br(q,f) 
@ photosphere

• decompose w/ spherical
harmonics
• coeffs. è Al,m 26



time

Br(q,f) ``measured’’ over 
entire sphere

• accumulate strips over 
27-day rotation

• hope that not much changes
• fill in poles (somehow)
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PFSS model 
(potential field 
source surface)

Br(q,f) ``measured’’ over entire sphere
• accumulate strips over 27-day rotation
• hope that not much changes
• fill in poles (somehow)
• decompose w/ spherical harmonics
• coeffs. è Al,m

open 
field lines

closed field 
lines

Separatrix dividing 
open from closed
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Solar wind flows from 
open field crossing r=Rs
… the `source’ of the wind
è the `source surface’

vol. I ch. 4
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Assumptions of the PFSS
• No currents in coronal field (simplest equilibrium)

• Field becomes open (radial) @ fixed radius  r=Rs

•Not much change during 27-day accumulation€ 

∇ × B = 0 Ro < r < Rs

è Model distinguishing 
open/closed coronal field

è Field actually open will be 
source of solar wind, less 
dense & dark in EUX & SXR   
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10-4 T

10-5 T
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Vol. III fig. 8.1
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r = R⨀

r = 2.5 R⨀
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dz< 0

dz> 0

dz< 0
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The wind through the cycle
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Effect of a ``warped” HCS

Vol. III fig. 8.6 Vol. III fig. 8.7
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Vol. III fig. 8.5
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Vol. III fig. 8.5

Vol. III fig. 8.4
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Vol. III fig. 9.1
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Result
from 
IBEX

Science May 10, 2012

vfms = 26.8 km/s

vfms = 21.4 km/s 47



Summary

• Corona: because there is heating – reaches high T 
because radiation cannot balance heating so 
conduction is needed

• More heat è higher density
• Wind: because there is heating – advective energy 

flux balances heating
• Creates heliosphere
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