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• Turbulent acceleration; electrons.

• Turbulent acceleration; ions.

Prof. Robert Ergun
Email: ree@lasp.colorado.edu



HSS, 2024. Page 2

PleiadesCosmic Rays
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The discovery of cosmic rays by 

balloons and cloud chambers was 

the beginning of particle physics.
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PleiadesCollisional Versus Collisionless Plasmas
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Collisional

(1) The interior of the Sun and 

planetary ionospheres examples of 

collisional plasmas; they have high 

densities

(2) Momentum and energy exchange 

between ions and electrons (and/or 

neutral particles) can be dominated 

by collisions. 

(3) The force equation must include 

viscosity and collision terms related 

to momentum exchange.

(4) Collisions often lead to a 

Gaussian distribution as per the 

central limit theorem.

Collisionless

(1) The solar corona, solar wind, 

Earth’s magnetosphere, and many 

astrophysical plasmas can be treated 

as “collisionless”.

(2) Momentum and energy exchange 

between ions and electrons is 

dominated by B and E.

(3) Due to low damping, collisionless 

plasmas are often turbulent.

(4) Collisionless plasmas often do not 

have Gaussian distributions and may 

have energetic tails.
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PleiadesFermi’s Ideas: Power-Law Tail
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The basic idea is to take a large 

volume of space and define the 

number of particles in that volume 

per unit energy as F(W). Allow 

for a heating rate ሶ𝑊(𝑊) and an 

escape rate PE(W). Separate F into 

bins with width W. The heating 

causes bin n to gain particles from 

bin n-1:

PE is the probability of escape. 

In steady state, Gain = Loss, so:
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PleiadesFermi’s Ideas: Power-Law Tail
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EscapeThe above formula becomes a 

differential equation:

Fermi assumed that ሶ𝑊 =
Τ𝑊 𝑡𝑎𝑐𝑙 and that 𝑃𝐸 𝑊𝑛 =
Τ1 𝑡𝑒𝑠𝑐, which gives the solution:

Power Law!
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PleiadesFermi Acceleration

TemperatureFermi acceleration. Energization often involving 

reflection that can lead to an energetic tail in a 

particle distribution. 

A common use of Fermi acceleration refers to 

the curvature drift (or reflection), which allows a 

particle to gain energy from an electric field 

normal to the curvature. 

A reflection leads to electron velocity gain of 

VAlfven so this process is weak in the 

magnetosphere. 

However, multiple reflections in a collapsing 

island could lead to significant energization.

Nice example: Drake, Shay, & Swisdak, 2008
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PleiadesRequirements for Power Law Tail

Temperature
(1) Collisionless

(2) An energization mechanism that favors energetic particles.

Collisions often lead to a Gaussian 

(central limit theorem).
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PleiadesDiffusive Shock Acceleration
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PleiadesDiffusive Shock Acceleration

u1

1

B1

P1
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Because of the motion, each time 

the particle reflects it gains energy:

up -> -(up + 2u1)

up

Because of the motion, each time 

the particle reflects it gains energy:

up -> -(up + 2u2)

Energetic particles gain more 

energy (relativistic).
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Betatron  Acceleration

Suppose a particle with perpendicular energy of 10 keV is in a uniform 20 

nT magnetic field. What will its perpendicular energy be if B is increases in 

time to 2000 nT? What happens to the parallel energy?

Since  is conserved, W⊥ increased to 1 MeV. Quite a bit of heating!

The parallel energy is unchanged. 
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PleiadesAurora and Particle Acceleration
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PleiadesLater Discovery: Three Particle Acceleration Processes
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Stochastic Energization

To start, we assume that the E has a well-defined correlation time. An 

individual particle undergoes a series of uncorrelated impulses 

that result in a “random walk” in v. During an impulse, the energy change is:

𝛿W =
1

2
𝑚 𝒗𝑜 + 𝛿𝒗 2 −

1

2
𝑚𝑣𝑜

2 =
1

2
𝑚 𝒗𝑜 ∙ 𝛿𝒗 + 𝛿𝒗𝟐 2

where vo is the momentum prior to an impulse. In 1st order heating, 𝒗𝑜 and 𝛿𝒗 may 

have a correlation. In other words, 𝒗𝑜 ∙ 𝛿𝒗 ≠ 0. 
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Stochastic Energization

Here, we look at random turbulence mainly perpendicular to B, so we 

assume 𝒗𝑜 ∙ 𝛿𝒗 = 0. In 2nd order heating, the impulse has a random direction 

and sign compared to the initial velocity, so the net energy change after N 

impulses is:

෍

𝑁

𝛿W ≈
1

2
𝑚𝛿𝒗𝟐 =

𝑒2𝑡𝑐𝑜𝑟𝑟
2 𝑁 𝑬2

𝟐𝑚

Assuming 𝛿𝒗 ≪ 𝒗𝑜, the resulting heating rate after a time period of N tcorr 

and is then:

𝛿W

Δ𝑡
≈
𝑒2𝑡𝑐𝑜𝑟𝑟

2 𝑁 𝑬2

𝟐𝑚𝑁𝑡𝑐𝑜𝑟𝑟

ሶW ≈
𝑒2𝑡𝑐𝑜𝑟𝑟 𝑬2

𝟐𝑚
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• Turbulent acceleration: electrons.
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PleiadesMagnetotail Reconnection

Sub-solar magnetic 

reconnection is at 

the magnetopause, 

roughly 10 RE.
Magnetotail 

reconnection is 

at ~25 RE.
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PleiadesMagnetotail Reconnection

Sub-solar magnetic 

reconnection is at 

the magnetopause, 

roughly 10 RE.

MMS is at -20 RE. 
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PleiadesMagnetotail Reconnection

Sub-solar magnetic 

reconnection is at 

the magnetopause, 

roughly 10 RE.

Excess magnetic pressure can cause the current sheet to thin.
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PleiadesMagnetotail Reconnection

Sub-solar magnetic 

reconnection is at 

the magnetopause, 

roughly 10 RE.

Magnetic reconnection can initiate at ~ -15 RE.

MMS observes a tailward flow typically several 100’s of km/s. 
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PleiadesMagnetotail Reconnection

Sub-solar magnetic 

reconnection is at 

the magnetopause, 

roughly 10 RE.

The magnetic reconnection region often retreats tailward. MMS can 

observe the magnetic reconnection. 

(1) B = 0. (2) Vx goes negative to positive. (3) Bz goes negative to 

positive.
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PleiadesMagnetotail Reconnection

Sub-solar magnetic 

reconnection is at 

the magnetopause, 

roughly 10 RE.

After the magnetic reconnection region retreats, MMS observes a 

earthward flow and Bz positive. “Flow reversal” is an excellent 

indicator. 



HSS, 2024. Page 23

Heliophysics

Summer School

Part 2
• Particle Acceleration Basics.

• Magnetotail Reconnection

• Turbulent acceleration: electrons.

• Turbulent acceleration: ions.

Prof. Robert Ergun
Email: ree@lasp.colorado.edu



HSS, 2024. Page 24

PleiadesMagnetotail Reconnection

Electron Acceleration

• Electron acceleration can be 

dominated by stochastic energization 

in strong turbulence, when present.

• Electron acceleration is a natural 

consequence of turbulence: higher-

energy particles are first in line 

receiving dissipated energy. 

• Electron acceleration in turbulence 

can be greatly amplified by trapping 

in a magnetic depletion. 
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PleiadesElectron Acceleration: Near-Earth Event 

Ergun, Usanova,  et al., 2022; Usanova & Ergun, 2022
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PleiadesElectron Acceleration: Near-Earth Event 

1. Electric field 

Turbulence

Ergun, Usanova,  et al., 2022; Usanova & Ergun, 2022
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PleiadesElectron Acceleration: Near-Earth Event 

2. Magnetic field 

Turbulence

Ergun, Usanova,  et al., 2022; Usanova & Ergun, 2022
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PleiadesElectron Acceleration: Near-Earth Event 

5. Ion 

acceleration & 

energization

Ergun, Usanova,  et al., 2022; Usanova & Ergun, 2022
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PleiadesElectron Acceleration: Near-Earth Event 

6. Electron 

acceleration & 

energization
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PleiadesElectron Acceleration from Turbulence?

(1) The B spectra is consistent with 

turbulence.

(2) The E spectra has the 

characteristic electrostatic 

“shoulder”.

(3) Perpendicular energization 

requires circumvention of the first 

adiabatic invariant (𝜇 =
Τ𝑝⊥

2 2𝛾𝑚𝑜𝐵). 

(4) However, there is little power at f 

> fce, which, at first glance, suggests 

that perpendicular electron 

energization should be negligible. 
Little power at fce.
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PleiadesElectron Acceleration from Turbulence?

Magnetosphere

If f < fci, E and B show correlation 

distance between di and i. 

di = 250 km; i = 75 km 

If f > fci, E and B show correlation 

distance consistent with de and e. 

de = 6 km; e = 0.82 km 

Little power at fce.
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PleiadesElectron Acceleration from Turbulence

High-energy particles are 

energized: they experience 

changes in E faster than the 

gyro-period. 

Low-energy particle 

receive little energy: 

they experience a near-

constant E. 

“The rich get richer.”

Credit: Usanova
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PleiadesVerified by Test-Particle Simulations

Magnetosphere

Index: -2

Index: -2
Index: -2

Ergun, Usanova,  et al., 2022; Usanova & Ergun, 2022
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PleiadesElectron Energization in Turbulence 

A. Electron acceleration is a natural consequence of turbulence: higher-energy 

particles are first in line receiving dissipated energy. 

B. Stochastic electron acceleration can be greatly amplified by trapping in a 

magnetic depletion. 

Energization that favors a higher-energy particles can lead to acceleration 

and the development of an energetic tail.

(1) Turbulence, by its very 

nature, cascades energy 

in driven systems to 

smaller scales at which 

dissipation takes place. 

(2) Small-scale 

structures/waves in 

electric field (E) 

stochastically energize 

higher-energy electrons.

E PSD

k
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PleiadesIon Acceleration in Turbulent Reconnection

Ion Acceleration

• Ion energization comes from both 

stochastic energization in strong 

turbulence and by Speiser motion 

along the current sheet.

• The energetic tail is primarily from 

stochastic energization.

• The power-law index is controlled 

by the energization process and the 

escape process.

• A significant fraction of escaping 

fluxes in the magnetotail exit in 

the +Y direction (along the X-line). 
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PleiadesTurbulent Magnetic Reconnection in the Magnetotail

Ergun et al., GRL, 2018.
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PleiadesTurbulent Magnetic Reconnection in the Magnetotail

Ergun et al., GRL, 2018.
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PleiadesTurbulent Magnetic Reconnection in the Magnetotail

Ergun et al., GRL, 2018.
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PleiadesTurbulent Magnetic Reconnection in the Magnetotail

Ergun et al., GRL, 2018.
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PleiadesTest-Particle Simulation

Magnetosphere

The test-particle domain is 3D, has fully open boundaries, and boundary 

conditions are based on measured densities & temperatures.
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Sega & Ergun, 2024 ApJ



HSS, 2024. Page 42

PleiadesB and E Are Derived from Observations

Magnetic Field Spectrum
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The imposed B and E fluctuations are based on measured signals 

reproducing the observed amplitudes, spectra, speeds, coherence times, and 

coherence scales. 
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PleiadesSetting the Length of the X-line

Test-Particle Simulation
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An x-line length of ~2 RE yields a quantitatively close match between 

simulation and observations in:

• Ion distribution

• Ion temperature

• Density profile

Sega & Ergun, 2024 ApJ
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PleiadesEnergization at the Current Sheet
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PleiadesResults: No Turbulence versus Turbulence

No Turbulence:

• Speiser-like energization is 

significant.

• Energization is conservative in Ey.

• Few ions >80 keV.

• Many energized ions exit the +y 

face!

Turbulence:

• Speiser-like energization is 

significant.

• Stochastic energization dominates 

at high-energy!

• Most energetic ions exit the +Y 

face!
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PleiadesResults: No Turbulence versus Turbulence

No Turbulence:

• Energization is conservative in Ey.

• Few ions >80 keV.

Turbulence:

• Stochastic energization can dominate.
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PleiadesResults: Turbulence Amplitude

Energization Versus Turbulence Amplitude
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PleiadesTwo Old Lessons Re-Learned

Energization that favors higher-energy particles is 

required for to develop a non-thermal, energetic tail 

(power-law) in a particle distribution.

The spectral index is governed by the energization process 

combined with the escape process.

 
Blandford & Eichler, 1987
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PleiadesNext
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