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Why Study Energetic Particles
from the Sun?

* The Sun is significant source of energetic particles and
provides an excellent target for studying the
underlying physics of particle acceleration — a
fundamental topic In astrophysics

* This physics has significant overlap and application to
astrophysical plasmas, such as supernovae remnants,
which produce the majority of galactic cosmic rays,
but for which we cannot study in situ.

* Characteristic energies at CME-driven shocks can
exceed a few MeV, with maximum energies up to a
few GeV. Sufficient to study the acceleration process.
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SEPs are often described with two basic classes

Property Impulsive Gradual
Electron/proton ~102-10% ~50-100
SHe/*He ~1 ~4 x 1074
Fe/O ~1 ~0.1

H/He ~10 ~100

Qre ~20 ~14

SEP duration <1-20h <1-3 days
Longitude cone <30° <100°-200°
Seed particles Heated Corona Ambient Corona or SW
Radio type 111 II

X-ray duration ~10 min-1 h 21h
Coronagraph N/A CME

Solar eind N/A IP shock
Events/year ~1000 ~10

CME-related
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Impulsive Solar-Energetic Particle Events

* Impulsive SEP events seen at 1AU are often characterized by clear velocity dispersion signatures.
* resembles the “Nike®-swoosh” when plotted as a time vs. MeV/nuc. scatter plot

e That they are impulsive implies that whatever accelerates them does so on a time scale shorter than the
transport time scale.

* Ideal for studying charged-particle transport in the interplanetary magnetic field between the Sun and Earth

ACE/ULEIS Observations at 1A
Flare at Sun Transport in IMF  EE T P A Sl (Nt o v et T P A

\“\I\Earth’s orbit

0.5

Y (AU)

MeV/nucleon
-

£ 'f S T B AR .
g . !} oo Wi 03, . "o ’ o ,&, N LB - o | - »
¥ oy S T TAL M TR & ot | '4 Y& p v "3, N WR ~ 1

§/15/98  8/17/98  8/19/98
Mason et al., 1999

2003/11/04 19:48




MeV/nucleon

—
.

53 5, 5
o £

:: ;3 ) Y

BNk 1Y

R

é :

A

i e i
-

. . =
> "o Wt S

W et gy e q
oi' N ,‘;'
. :

! LI

I 1 !
-y 'ifn"v'h""“

8/15/98

W

HALE

8/17/98

7

a3
.
.'l \.“- o
;

8/19/98



This well-defined curve is

determined by the arrival time of |4kt

particles at a given energy that
move WITHOUT scattering.

They move exactly along the
Parker spiral and their arrival
time vs. energy is well

8/15/98

8/17/98

8/19/98



L, . e ¥ o . ' e U 0
X .',.‘ ! !.Dlr I I.: ); P "-'- ‘ s ’ K " F
B i s W o2 b B TR NN Y | 0N  HR :
(ST g* Ve o 1 4 { -t "
g -8 3 :

This curve can be obtained from:
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which assumes a constant speed, v, "g‘j.f";;f‘,?if“* )
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and d is the pathlength. .?"‘,1};.5....‘,_
p

If t, t ojeqser @aNd v are known, can get d. g &

Ideally, this will be close to the length [}

of the Parker-spiral field line which :
connects the observer to the Sun
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This “thicker” part is cause
scattering in the interplanetary
medium. At a given energy, there
is a range of arrival times of the

particles since many are delayed in
their arrival

8/15/98

|
!
1._ 3

o : 4 ':ll.::-;':f o
D 1) i
il

8/17/98 8/19/98



' - . L L l A
4’ 7‘ ? l.l.r ’

N | o R

Fitting the intensity as a function
of time for various energies to iy ;
solutions to a transport equation |4 ’ L ;é{ el
(discussed later) will give the T T T (AT P

scattering mean-free path R
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These intermittent features dare

caused by large-scale turbulence in f#.

the interplanetary magnetic field,
resulting in the spacecraft crossing
alternatively empty and filled
particle “flux tubes”
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CME-related SEP events

* The largest SEP events are almost always associated with fast
CMEs (usually halo CMEs)

* At 1AU, at energies below several MeV, the peak proton
intensity is almost always coincident with the passage of the
CME shock.
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* A typical very large SEP event associated
with a fast interplanetary (IP) shock seen by

multiple spacecraft

Contamination from
higher energies
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* The intensity vs. time depends on energy

Particle Intensity [cm® sr s MeV]™

* At low energies, the peak intensity is at the

| STEREO-A/

IP shock arriving ~1.5 days after the solar | wovcr e
event; at high energies, the peak is well L il
before the shock, closer to when the solar
event was observed.
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* The same shock likely accelerated these ’ F
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CME-related events also depend on the direction the CME is

moving relative to the observer
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The physics of high-energy charged particle transport
(= propagation and acceleration).

* Treat as test particles.
e Assume there are no particle-particle collisions

e Equations of motion for any charged particle from the Lorentz force.
* Need E and B fields.

* Can get them from MHD simulations, for example, but this not “simple”
e Can also get them from kinematic models. Easier, perhaps, but how realistic are they?

e Can also average over an ensemble of particles and arrive at very useful
equations that describe the collective behavior of the particles, that are
generally straightforward to solve numerically on computers

e Parker transport equation (Parker, 1965)

* Focused-transport equation (Roelof, 1967; Ruffolo, 1995; Isenberg, 1997; Kota,
2000; Zhang et al., 2009; Droge et al., 2010)



The fundamental equation in ALL transport/acceleration “theories”
start with the Lorentz-force on acting on individual charged particle.

“Concerning hydrodynamics & magnetohydrodynamics in nature, where no one
applies external potentials, the dynamics of gases and magnetized plasma is
described by the equations of Newton and Maxwell”

- Gene Parker, 2009 Summer School in Solar Physics, Sunspot, NM

* Lorentz force (cgs, or “Gaussian” units, which | prefer)

dp
dt

* Where w = p/m is the particle velocity vector, and p is the momentum. ¢ is the
particle’s charge, E and B are the electric and magnetic fields, respectively.

qﬁ+§ «B

e Other forces are generally small, but can be added as needed (e.g. gravity,
radiation pressure, etc.)



A charged particle moving in a turbulent magnetic

field (numerical integration)

particle seems
magnetic field line.
This is artificial and a
consequence of the
assumed reduced

Note that this
“stuck” on a

dimensionality of the
magnetic field. Be
careful of this!

event
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Under the hood: The underlying physics of particle transport

Pitch-angle , spatial diffusion, and the quasi-linear t

* We assume charged particles undergo pitch-angle diffusion and their distribu

df (wz,t) of (wzt) 0 of (wz,t) This
%Z_W“%Jra(l)w(u)—gz >

* D, is the pitch-angle diffusion coefficient, i is the pitch cosine. w is the partic

the direction along the mean magnetic field.
* By assuming small anisotropy, this can be written as a spatial diffusion equatig

df(zt) 0 ( 0f(z0)
dt _5("” 9z )

Jokipii, (1966, 1969)
Hasselmann & Wibbereni
Earl, (1974)

Luhmann, (1978)

* Where Ky Is related to the Doy by

w? (1(1 = p?)?
g w) = Tf —p
0 ! Mean-free path 4

Pitch-angle, spatial diffusion, and the quasi-linear theory (cont.)

* The “scattering” is caused by turbulent magnetic fields. D, is obtained by

Boltz] integrating the equations of motion of particles moving within these fields

(Jokipii, 1966). For a mean magnetig

dp,

* Solved by inserting the zeroth order
fluctuating field) into the above, dro
guantities, integrating over time, avd
realizations. One obtains the well-k

D,, = lim

linear theory (cont.
= %(vxSBy — vySBx) v )

* Assuming a power spectrum of the form:

C

PUY =Tty

g% = fwP(k)dk
0

A 2
@oh iy

HE AtSeo 2AL 4 Ky = ———— —0) csc(3m/5)
200,02

g

In addition to diffusion, there are other important collective effects on
charged particles: they include

e Advection

U-vf

(arises because the “scattering centers” are moving
with the bulk plasma flow)

* Energy Change

P, =0f
-V -U—=
3 Uap

(arises because of scattering in converging or
diverging flows)

* (Can also solve for cross-field transport

2
5vL
K, = 11]26 (Bio> sin(37/5)

Note that the energy-cha
In fact, the electric field is

Starting with the work do

Pitch-angle, spatial diffusion, and the quasi-

* L. is the turbulence correlation length. We obtain

5/3
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turbulence
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Then, by using a vector identity, and averaging over an isotropic
distribution of particles, it follows (c.f. Jokipii, AIP Conf. Proc., 2012)

Which appears in the energy-change term, where p’ is the momentum
in the frame of reference moving with U.




The Parker Transport Equation (Parker, 1965):

of _ v, 9f 9 (90f , 9of 10Vuwi Of
ot oz, l(‘?:zzz & 0 D’Z(‘?azi '3 Oz, Olnp |
advection diffusion drift energy change source

Where the drift velocity due to the large scale curvature and gradient of the
average magnetic field is:

Va=50 v x [B]

B2
And the symmetric part of the diffusion tensor is:
(5) _ BBy
Kij = K105 + (k| — K1) B2

The Parker Transport Equation is valid whenever the anisotropy is small
(as observed for GCRs). It is widely used and remarkably general.



Solving the Parker equation for SEP studies

* Generally closed-form analytic solutions to
the Parker equation only exist in very
simplified situations.

—Flare-accelerated SEPs

. o /'Sup(étr{ermaI-Seeds .Jﬂr"“'
Lk - e 5

e~ Field Lines” -

* There are two popular ways to solve it
numerically

Finite-difference integration
e Advantage: “perfect” statistics.

* Disadvantage: numerical stability, difficulty solving
in 3D (cross-derivatives).

Stochastic Integration

* Advantage: easy to implement on a computer.
Perfectly stable.

e Disadvantage: statistics



Finite-difference approach

* Solve the Parker equation directly by writing derivatives as:

af (x,p,t) R i,T;'Jrl B fg of (x,p, 1) N fiﬁl'j _ fi?ll'j “centered”
ot At 0x 2Ax differencing
wpwind’ Ofopt) i =Sl 0fGept) | fiy =26+
ifferencing o AL 22 Ao

* There are many ways to do this. If the spatial/momentum derivatives are evaluated at the “n+1"” time step,
then this is called “implicit” (stable). Explicit is the case shown above where these derivatives are evaluated at
the “n” time step and is generally unstable and requires very small time steps.

* Choosing upwind/downwind differencing for the momentum change depends on the divergence of the plasma
veIocity%whether it is acceleration or deceleration).

* The resulting finite difference equation, after being written out in its entirety, is known as the “tridiagonal
matrix method”

e There is usually a limit on the time step for stability.

* This approach is generally straightforward for 1-D (spatial) problems, but is more difficult in 2 or 3 dimensions.
Cross-derivatives are tricky!

* There are a number discussions on the finite-difference approach to solving equations in textbooks.



This method was used for SEPs accelerated by spherical
shock propagating from the Sun by Giacalone, ApJ, 2015.
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SEP intensities vs. time at 1 AU
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Stochastic integration approach

* In this method, elements of the distribution function are treated like
“particles” with each particles position and momentum determined by
stochastic equations. A simple example, for 1D diffusion/advection, is:

At
x™ = x™ + U At + EV2KAL p"tt = p" (1 -3V U)

e Similar equations can be written in 2D and 3D.

* This method is easy to implement on a computer, and with the great
speed of modern computers, it is not overly computationally
expensive.

* This method is used commonly in studies of cosmic rays as well.

* One must not think of these as real particles, however, they are
elements of the distribution function!

* Forinstance, (x"*1-x")/At is NOT the particle speed!



This method was used to study particle acceleration at a shock in which

the local magnetic-field / unit-shock-normal vary along the shock. This is
the case of a CME-shock

Number density (arbitrary unit)

Shock center P
=== === Shock front
Magpnetic field

y (Solar radii)

I\ )
é V
..”\01“.0; .‘ ""’,"

50
X (Solar radii)

Work by Xiaohang Chen, University of Arizona



This method was also used to study Particle transport from impulsive solar flares
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Giacalone & Jokipii,
’ A A
ApJ, 2012 x (AU) x (AU)

Numerical simulation of the distribution function (contours) of SEPs associated with a solar flare

The two different plots are for two different values of cross-field diffusion



Time-intensity profiles of SEPs from this model
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Direct orbit-integration approach

* It is also straightforward to numerically solve the force equation itself,
and solve for the trajectories of a large number of individual particles.

Solved numerically with various common approaches:
leap-frog, Runga-Kutta, Burlish-Stoer, etc. These can be
found in numerical methods textbooks

ool

dp -
ap q_, T
C

E+l
ac 1

* This approach contains the most physics
* Modern computers are fast enough that this is a reasonable approach.

* Need to know the electric and magnetic fields!

e Can get them from MHD simulations
* Need to be careful with grid resolution!

e Can get them from kinematic models and even include turbulence



Some exam ples Of StUdieS Very high-energy SEPs leading to “Gound-Level

Enhancements” seen by Neutron Monitors on

USing th|S d pproach Earth (Moradi & Giacalone, ApJ, 2022)
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The basic physics of particle acceleration at shocks

- Qua§|-parallel shock N Quasi-perpendicular shock
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Position relative to the shock Decker, 1988



. . Axford et al. (1977), Krymsky, (1977),
Acceleration at Shocks: Bell (1978), Blandford & Ostriker (1978)

Diffusive Shock Acceleration Theory 101

* Charged particles that are confined near the strong
plasma compression associated with a collisionless g y-Perpendicular
shock have a net gain in energy

* The confinement is due to scattering within
fluctuating magnetic fields, due either to pre-existing | pacaiiel Shock
turbulence through which the shock moves, or those
due to instabilities associated with the shock

Quantitative solution for the distribution function of accelerated particles comes from the
Parker equation

0 0 0 0 0 10V O

of __, 0f 0 0f . 0f 10VuiOf

ot (9513@ 8%2 (9£Uj (9513@ 3 8[62 (91Ilp

advection diffusion drift energy change




Under the Hood: The solution of the Parker equation for a shock

|
i upstream shock ownstream
Consider Pt U U downst Subject to the following boundary conditions / constraints
a shock 1 2
. . L fi-ep) =) == B =
1 2 ]
x=0 2. f,(+,p) is finite =——=> A,(p) =0 llm \K »)—— fi(x P) = _E_‘}g,lAl(P)Ul”XP(Ulx/Kl)Jx?f
We wish to solve the Park ti =
e wish to solve the Parker equation 3. £,00,p) = f,00p) =—=> A4,®)+f®) =B,®) = —A(),
of(x,p) _ _[ ) af(x,P)] e )6f(x P) 1dU(x) of(xp) _ 0
at x ox 3 dx dap Giving: Term 2
Solve this separately in the upstream (1) and downstream (2) regions. f1t,p) = A;(p) explUIX/Klj + fs(p) x<0 . o
(1) lim [U(x)f (%, p) =0
5f12(x p)| ,, 0fi(ep) _ f20e.p) = A®) +fs(p) x>0 e e
KIZ( ) J Ul‘Z x =0
This has the general solution To get A,(p), we integrate over small region near shock, giving
Term 3
f1206,p) = Ap,(p) exp lUl‘zx/KuJ + B1,(p) lim e k(@ )6f(x 12 —U(x )Bf(x p) 1dU) of(x, P)l =0
‘ ' _ 0 R ; 0= 03500 LD L, upp 22— By 2
Term 1 Term 2 Term 3 qumo ( = UPS(x)p——-|dx = ( 2= UDp TP%( 1) + fs(p))
Combining the three terms leads to
U,-U,dA U,—U,d A c= fs()’)
—ay, + Lo U@ | U= Uy ) = explan) 4} +C=— | exp(ay)———dy
3 dlnp 3 dlnp fg(y) Inserting this into (1) on slide 6, we have, finally,
—> A4 =—exp(-ay) f exp(ay) ———dy — C exp(—ay)
Re-arranging, leads to
. f(p) = ap‘”fp“‘lfs(p)dp xz0
dAl(T?) A ( )= _dfs(p) wherer = 30U, In terms Ofp, this is
dinp T T g TR A = —p-c f @) £10) = £s) + [f() — fs()]e
1(p)=—p™" | o=y —dp —Cp Casel:  fs(p) = Qud(p —po)
Defining a new variable, y = Inp, it can be shown
_4fs Since A, must remain finite as p > 0, we require C=0. _ A The standard DSA result
exp(= ay) [CXP(ay)A ml= dy Integrating by parts, and taking ;>0 as p—>0, it can be shown f2(p) = aQop™p,* ' = 70 \Po
fs(;v)
— —[eXP(ay) A (0] = —exp(ay) ——— _ fs®)
@ AG) ==~ fs@) — @ [ P fop)dp| = ~5@) + ap ’ ;
0 p<0 ‘ «p~s
Case 2: p)=< . -8
fsw fs(®o) (ﬂ) P =pg
Do, Do p
= » —-a
r-ssro|2) @) e
0.
. . . . " ”
These slides are included in the list of “extras N
1) = af s(py) (p_) In (?T) a=46
0, 0,




Solution to the Parker equation for
a planar shock and mono-energetic
source at the shock

Uql|z|

fO( ) eXp( ﬁxaz,l(p)) z <0

f(af,p)—{ B
fol) >0

where v = 3U, /(Uy —Us) = 3r/(r —1)

The diffusion coefficient in this illustrative
example is normal to the shock, which is
related to the magnetic field

. 2
Kee = K1 SIN°0Op, + K| cos’ 0g,,

part./cm? -sec-MeV -sr

Qualitatively consistent with
spacecraft observations

ACE multi-instrument data
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A comment about combining large-scale MHD models of CMEs

with particle —acceleration/transport models
Verbeke_'lgtal., A&A 2019

* To properly solve particle acceleration at a
shock, the diffusive length scale MUST be
resolved by the MHD model.

« MHD grid cell size < K, /U,
* This is a very stringent constraint

S

* jn situ observations of SEPs coincident with
CME-shocks at 1AU finds this length scale to be
about 0.002AU for 100 keV protons.

7 10 |
> .
* It is MUCH shorter near the Sun because the = ol See slide #23
magnetic field is much stronger there. Perhaps g L
100-1000 times shorter. = 102
* Thus, MHD models (that are combined with 2 10
SEP models) must resolve length scales as small g
as 10~ AU or about 0.01 solar radii. 2 1075 T ————

DOY of 2003



Final comments

SEPs are a very important aspect of the space radiation
environment, and it is important to understand how they are
accelerated and transport in space.

This underlying physics of particle transport and acceleration is
reasonably well established, but the equations are not “trivial” to
solve.

It is very important to recognize the underlying assumptions in any
model, and this is particularly important in SEP
acceleration/transport models as well.

Combining large-scale models of CMEs with SEP models, in a

manner that includes most of the important physics, is a GRAND
CHALLENGE
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Consider upstream shock downstream
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Consider upstream shock
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We wish to solve the Parker equation
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Consider upstream shock downstream
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We wish to solve the Parker equation

af (x,p) af (X»P)] U af (x,p) N 1dU(x) of(x,p)
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ot 3 dx P ap 0
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Solve this separately in the upstream (1) and downstream (2) regions.
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Consider upstream shock downstream
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We wish to solve the Parker equation

af (x,p) af (X»P)] U af (x,p) N 1dU(x) of(x,p)
0x 0x

ot 3 dx P ap 0
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Solve this separately in the upstream (1) and downstream (2) regions.
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This has the general solution

f1’2(x» p) = A1,2(P) exp V]yz x/’c1’2‘ + Bllz(P)



Subject to the following boundary conditions / constraints

1. fi(=o,p) =fs(p) > Bilp) = fs(p)
2. fo(400,p) is finite 1 > A,(p) =0
3. f40,p) =f,00,p) > Ai(p) + fs(p) = By(p)
Giving:
f1(x,p) = A, (p) exp|V1¥/ic | + f5(p) x <0 "
f20x,p) = A1(p) +fs(p) x=0

To get A,(p), we integrate over small region near shock, giving

dx =0

e—>0

t€1 9 of (x, of (x, 1dU of (x,
[ P ) v 2, 1850,

Term 1 Term 2 Term 3



Term 1 0

P 2 a 1\ .
lim [1c, (™2 o p)‘x +E—1nﬂx1(p) ! ;i 2 = ~lmla@Uen Y],
= —A:(p)U,

Term 2
11n(1) Ux)f(x, p)‘ =0

Term 3
te 1 2 u,—-U, 0

iy [ [502 = 0o@p o ax = 3w, - up 2B = Loy ) + o)



Combining the three terms leads to

U,—U,dA(p) U,—U,dfs(p)
_A —
1P+ 3 dinp * 3 dinp 0

Re-arranging, leads to

dA;(p) dfs(p) 3U;

A = — h . =
dinp +adi(p) dinp wnere: Uu,—U,

Defining a new variable, y = Inp, it can be shown

df s(y)
dy

d
exp(—ay) & lexp(ay) A, (¥)] = —

dfs(y)
dy

d
— & [exp(ay) A;(y)] = —exp(ay)



dfs(y)
dy

d
—— A(y) = —exp(—ay) j exp(ay) f;;y) dy — C exp(—ay)

—  exp(ay) A,() +C = f exp(ay) L5 gy

In terms of p, this is

. 4f s(p)
dp

Ai(p) =-p“¢ j p dp — Cp™™@

Since A; must remain finite as p = 0, we require C = 0.
Integrating by parts, and taking fc=20 as p—=20, it can be shown

Ai(p) = —p™* lpafs(l?) - j Pa_lfs(P)dP] =—fS(p)+ap™@ j p®1f(p)dp



Inserting this into (1) on slide 6, we have, finally,

f,(p) = ape f pe1fo(p)dp
f1®) = fs) + [f2(p) — fs(@)]exp(V1 %/,

x>0

x <0




Case 1:

Case 2:

fs(p) =

Qo0 (P — po)
_ -, a—1 _ a_QO B
f2.(p) = aQyp™%py — D, (po
fs(p)
( 0 p <0

fs(p) =3

kfs(Po) (pﬂo)_a P Z Po

o = S50 |(2) - (2) ]

f2(p) = af s(po) (p%)_“ In (_)

p
Po

-
) <+—— The standard DSA result

OCp_5
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The solution is (see also Neergaard-Parker & Zank, 2012):

f(p) = ap j p*1fo(p)dp

x=0
f1(@) = fs(@) + [f2(0) — fs@lexp(V1%/,) x<0 10°
3l ,
where a = U,—U, 10
For the specific case in which the source is a power-law f(p)
distribution, with spectral index, 6, we obtain for the fs(po) 10+
downstream distribution:
=) —a 10°
a p p
Fo0) = —— f5(po) [(—) - (&) ]
a—o0 Po Po
10
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