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• The Sun is significant source of energetic particles and 
provides an excellent target for studying the 
underlying physics of particle acceleration – a 
fundamental topic In astrophysics

• This physics has significant overlap and application to 
astrophysical plasmas, such as supernovae remnants, 
which produce the majority of galactic cosmic rays, 
but for which we cannot study in situ.

• Characteristic energies at CME-driven shocks can 
exceed a few MeV, with maximum energies up to a 
few GeV.   Sufficient to study the acceleration process. 

Why Study Energetic Particles 
from the Sun?



High-energy charged particles in 
the solar system
• Galactic cosmic rays(GCRs)

• Anomalous cosmic rays (ACRs)
• Solar energetic particles (SEPs)

• High-intensity, long duration events associated with coronal 
mass ejections  (Gradual SEPs)

• Lower intensity, short lived events associated with brief, 
impulsive solar flares (Impulsive SEPs)

• Recurrent events associated with solar wind structures that 
co-rotate with the Sun (CIRs)

• Solar Proton Events (SPEs) are a subclass of SEPs associated 
the highest intensity events that are defined by the 
NOAA/GOES.

• Ground-level enhancements are extremely intense SEP 
events.

• High-energy ions and electrons from planetary 
magnetospheres
• Jovian electrons
• Aurora and magnetospheric “substorms”

We often characterize energetic particles with 
its “energy spectrum” which is related to the 
phase-space distribution function. An example 
is above from NASAs ACE spacecraft



(Reames,1999)

SEPs are often described with two basic classes
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CME-related flare-related



Impulsive Solar-Energetic Particle Events

Mason et al., 1999

• Impulsive SEP events seen at 1AU are often characterized by clear velocity dispersion signatures.
• resembles the “NikeÒ-swoosh” when plotted as a time vs. MeV/nuc. scatter plot

• That they are impulsive implies that whatever accelerates them does so on a time scale shorter than the 
transport time scale.

• Ideal for studying charged-particle transport in the interplanetary magnetic field between the Sun and Earth

H-Fe ions
ACE/ULEIS Observations at 1AU

Transport  in IMFFlare at Sun





This well-defined curve is 
determined by the arrival time of 
particles at a given energy that 
move WITHOUT scattering. 

They move exactly along the 
Parker spiral and their arrival 
time vs. energy is well 
determined



This curve can be obtained from:

which assumes a constant speed, v, 
and d is the pathlength.

If t, trelease, and v are known, can get d.  

Ideally, this will be close to the length 
of the Parker-spiral field line which 
connects the observer to the Sun

𝑡 = 𝑡!"#"$%" + 𝑑/𝑣



This “thicker” part is caused by 
scattering in the interplanetary 
medium. At a given energy, there 
is a range of arrival times of the 
particles since many are delayed in 
their arrival



Fitting the intensity as a function 
of time for various energies to 
solutions to a transport equation 
(discussed later) will give the 
scattering mean-free path



These intermittent features are 
caused by large-scale turbulence in 
the interplanetary magnetic field, 
resulting in the spacecraft crossing 
alternatively empty and filled 
particle “flux tubes”



• The largest SEP events are almost always associated with fast 
CMEs (usually halo CMEs)
• At 1AU, at energies below several MeV, the peak proton 

intensity is almost always coincident with the passage of the 
CME shock.

CME-related SEP events



• A typical very large SEP event associated 
with a fast interplanetary (IP) shock seen by 
multiple spacecraft 
(ACE/SOHO/STEREO/GOES) near Earth

• The intensity vs. time depends on energy

• At low energies, the peak intensity is at the 
IP shock arriving ~1.5 days after the solar 
event; at high energies, the peak is well 
before the shock, closer to when the solar 
event was observed.

• The same shock likely accelerated these 
particles, but with a rate of acceleration 
that depends on the location of the shock

Contamination from 
higher energies



CME-related events also depend on the direction the CME is 
moving relative to the observer

Cane, et al. 1988



The physics of high-energy charged particle transport 
(= propagation and acceleration). 
• Treat as test particles.
• Assume there are no particle-particle collisions
• Equations of motion for any charged particle from the Lorentz force.

• Need E and B fields.
• Can get them from MHD simulations, for example, but this not “simple”
• Can also get them from kinematic models. Easier, perhaps, but how realistic are they?

• Can also average over an ensemble of particles and arrive at very useful 
equations that describe the collective behavior of the particles, that are 
generally straightforward to solve numerically on computers

• Parker transport equation (Parker, 1965)
• Focused-transport equation (Roelof, 1967; Ruffolo, 1995; Isenberg, 1997; Kota, 

2000; Zhang et al., 2009; Droge et al., 2010)



• Lorentz force (cgs, or “Gaussian” units, which I prefer)

• Where w = p/m is the particle velocity vector, and p is the momentum. q is the 
particle’s charge, E and B are the electric and magnetic fields, respectively.
• Other forces are generally small, but can be added as needed (e.g. gravity, 

radiation pressure, etc.)

𝑑�⃗�
𝑑𝑡

= 𝑞𝐸 +
𝑞
𝑐
𝑤×𝐵

The fundamental equation in ALL transport/acceleration “theories” 
start with the Lorentz-force on acting on individual charged particle.

“Concerning hydrodynamics & magnetohydrodynamics in nature, where no one 
applies external potentials, the dynamics of gases and magnetized plasma is 
described by the equations of Newton and Maxwell”

- Gene Parker, 2009 Summer School in Solar Physics, Sunspot, NM



A charged particle moving in a turbulent magnetic 
field (numerical integration)

“Scattering” 
event

Note that this 
particle seems 
“stuck” on a 
magnetic field line.

It is!

This is artificial and a 
consequence of the 
assumed reduced 
dimensionality of the 
magnetic field. Be 
careful of this!



Under the hood: The underlying physics of particle transport



The Parker Transport Equation (Parker, 1965):

Where the drift velocity due to the large scale curvature and gradient of the 
average magnetic field is:

And the symmetric part of the diffusion tensor is:

advection              diffusion                              drift                energy change            source

The Parker Transport Equation is valid whenever the anisotropy is small 
(as observed for GCRs).  It is widely used and remarkably general.



Solving the Parker equation for SEP studies
• Generally closed-form analytic solutions to 

the Parker equation only exist in very 
simplified situations.
• There are two popular ways to solve it 

numerically
Finite-difference integration

• Advantage: “perfect” statistics.
• Disadvantage: numerical stability, difficulty solving 

in 3D (cross-derivatives).

Stochastic Integration
• Advantage: easy to implement on a computer. 

Perfectly stable.
• Disadvantage: statistics



Finite-difference approach
• Solve the Parker equation directly by writing derivatives as:

• There are many ways to do this. If the spatial/momentum derivatives are evaluated at the “n+1” time step, 
then this is called “implicit” (stable). Explicit is the case shown above where these derivatives are evaluated at 
the “n” time step and is generally unstable and requires very small time steps.

• Choosing upwind/downwind differencing for the momentum change depends on the divergence of the plasma 
velocity (whether it is acceleration or deceleration).

• The resulting finite difference equation, after being written out in its entirety, is known as the “tridiagonal 
matrix method”

• There is usually a limit on the time step for stability.
• This approach is generally straightforward for 1-D (spatial) problems, but is more difficult in 2 or 3 dimensions. 

Cross-derivatives are tricky!
• There are a number discussions on the finite-difference approach to solving equations in textbooks.

𝜕𝑓(𝑥, 𝑝, 𝑡)
𝜕𝑡 →

𝑓!,#$%& − 𝑓!,#$

∆𝑡
𝜕𝑓(𝑥, 𝑝, 𝑡)

𝜕𝑥 →
𝑓!%&,#$ − 𝑓!'&,#$

2∆𝑥

𝜕2𝑓(𝑥, 𝑝, 𝑡)
𝜕𝑥2 →

𝑓!%&,#$ − 2𝑓!$ + 𝑓!'&,#$

∆𝑥2
𝜕𝑓(𝑥, 𝑝, 𝑡)

𝜕𝑝
→

𝑓!,#%&$ − 𝑓!,#$

∆𝑡

“centered” 
differencing

“upwind” 
differencing



ACE/EPAM

GOES-11

Simulated spectrum
(at shock crossing at 
1 AU)

ACE/EPAM
0.31-0.58 MeV
1.06-1.91 MeV

This method was used for SEPs accelerated by spherical 
shock propagating from the Sun by Giacalone, ApJ, 2015.



1 MeV

10 MeV

100 MeV

1 GeV

Event Onset
(r=5Rs) Shock

SEP intensities vs. time at 1 AU



Stochastic integration approach

• In this method, elements of the distribution function are treated like 
“particles” with each particles position and momentum determined by 
stochastic equations. A simple example, for 1D diffusion/advection, is:

• Similar equations can be written in 2D and 3D.
• This method is easy to implement on a computer, and with the great 

speed of modern computers, it is not overly computationally 
expensive.
• This method is used commonly in studies of cosmic rays as well.
• One must not think of these as real particles, however, they are 

elements of the distribution function!
• For instance, (xn+1-xn)/Δt is NOT the particle speed!

𝑥&'( = 𝑥& + 𝑈)∆𝑡 + 𝜉 2𝜅Δ𝑡 𝑝&'( = 𝑝& 1 −
∆𝑡
3
𝛻 3 𝑈



Work by Xiaohang Chen, University of Arizona

This method was used to study particle acceleration at a shock in which 
the local magnetic-field / unit-shock-normal vary along the shock. This is 
the case of a CME-shock



This method was also used to study Particle transport from impulsive solar flares

Numerical simulation of the distribution function (contours) of SEPs associated with a solar flare

The two different plots are for two different values of cross-field diffusion

1AU

1AU

Parker-spiral

Giacalone & Jokipii, 
ApJ, 2012



The iPATH model
(Hu et al, 2017; Li et al 2021)

A combination of Diffusive 
Shock Acceleration (DSA) 
and Focused transport 
equation

The spectrum at the shock 
is determined by assuming 
the results of DSA theory 
(discussed a bit later), while 
the focused transport is 
used to get distribution far 
from the shock

Time-intensity profiles  of SEPs from this model



Direct orbit-integration approach

• It is also straightforward to numerically solve the force equation itself, 
and solve for the trajectories of a large number of individual particles.

• This approach contains the most physics
• Modern computers are fast enough that this is a reasonable approach.
• Need to know the electric and magnetic fields!

• Can get them from MHD simulations
• Need to be careful with grid resolution!

• Can get them from kinematic models and even include turbulence

𝑑�⃗�
𝑑𝑡

= 𝑞𝐸 +
𝑞
𝑐
𝑤×𝐵

Solved numerically with various common approaches: 
leap-frog, Runga-Kutta, Burlish-Stoer, etc. These can be 
found in numerical methods textbooks



Some examples of studies 
using this approach

SEPs from Impulsive Flares moving in 
meandering magnetic fields 
(Giacalone, et al., ApJ, 2000)

Very high-energy SEPs leading to “Gound-Level 
Enhancements” seen by Neutron Monitors on 
Earth (Moradi & Giacalone, ApJ, 2022)

simulation

observation

Simulated arrival 
locations of 
particles as a 
function of 
longitude and 
latitude and time



Increasing
Particle
Energy

Position relative to the shock

Quasi-parallel shock Quasi-perpendicular shock

Decker, 1988

The basic physics of particle acceleration at shocks

Slower
Acceleration
case

More rapid
acceleration



• Charged particles that are confined near the strong 
plasma compression associated with a collisionless
shock have a net gain in energy

• The confinement is due to scattering within 
fluctuating magnetic fields, due either to pre-existing 
turbulence through which the shock moves, or those 
due to instabilities associated with the shock

Acceleration at Shocks:
Diffusive Shock Acceleration Theory 101

Axford et al. (1977), Krymsky, (1977), 
Bell (1978), Blandford & Ostriker (1978)

Quantitative solution for the distribution function of accelerated particles comes from the  
Parker equation

advection diffusion  drift                energy change



Under the Hood: The solution of the Parker equation for a shock

These slides are included in the list of “extras”



Solution to the Parker equation for 
a planar shock and mono-energetic 
source at the shock

The diffusion coefficient in this illustrative 
example is normal to the shock, which is 
related to the magnetic field

Qualitatively consistent with 
spacecraft observations

ACE multi-instrument data



A comment about combining large-scale MHD models of CMEs 
with particle –acceleration/transport models

• To properly solve particle acceleration at a 
shock, the diffusive length scale MUST be 
resolved by the MHD model.
• MHD grid cell size < Kxx/U1

• This is a very stringent constraint

• in situ observations of SEPs coincident with 
CME-shocks at 1AU finds this length scale to be 
about 0.002AU for 100 keV protons.

• It is MUCH shorter near the Sun because the 
magnetic field is much stronger there. Perhaps 
100-1000 times shorter.

• Thus,  MHD models (that are combined with 
SEP models) must resolve length scales as small 
as 10-5 AU or about 0.01 solar radii.

Verbeke et al., A&A 2019

See slide #23



Final comments
• SEPs are a very important aspect of the space radiation 

environment, and it is important to understand how they are 
accelerated and transport in space.

• This underlying physics of particle transport and acceleration is 
reasonably well established, but the equations are not “trivial” to 
solve.

• It is very important to recognize the underlying assumptions in any 
model, and this is particularly important in SEP 
acceleration/transport models as well.

• Combining large-scale models of CMEs with SEP models, in a 
manner that includes most of the important physics, is a GRAND 
CHALLENGE



extras



shock
U1 U2

κ1 κ2

upstream downstream

x=0

Consider 
a shock



shock
U1 U2

κ1 κ2

upstream downstream

x=0

Consider 
a shock

We wish to solve the Parker equation
𝜕𝑓(𝑥, 𝑝)
𝜕𝑡 =

𝜕
𝜕𝑥 𝜅 𝑝

𝜕𝑓(𝑥, 𝑝)
𝜕𝑥 − 𝑈 𝑥

𝜕𝑓(𝑥, 𝑝)
𝜕𝑥 +

1
3
𝑑𝑈(𝑥)
𝑑𝑥 𝑝

𝜕𝑓(𝑥, 𝑝)
𝜕𝑝 = 0



shock
U1 U2

κ1 κ2

upstream downstream

x=0

Consider 
a shock

We wish to solve the Parker equation

Solve this separately in the upstream (1) and downstream (2) regions.

𝜕𝑓(𝑥, 𝑝)
𝜕𝑡 =

𝜕
𝜕𝑥 𝜅 𝑝

𝜕𝑓(𝑥, 𝑝)
𝜕𝑥 − 𝑈 𝑥

𝜕𝑓(𝑥, 𝑝)
𝜕𝑥 +

1
3
𝑑𝑈(𝑥)
𝑑𝑥 𝑝

𝜕𝑓(𝑥, 𝑝)
𝜕𝑝 = 0

𝜕
𝜕𝑥

𝜅1,2 𝑝
𝜕𝑓1,2(𝑥, 𝑝)

𝜕𝑥
− 𝑈1,2

𝜕𝑓1,2(𝑥, 𝑝)
𝜕𝑥

= 0



shock
U1 U2

κ1 κ2

𝜕𝑓(𝑥, 𝑝)
𝜕𝑡 =

𝜕
𝜕𝑥 𝜅 𝑝

𝜕𝑓(𝑥, 𝑝)
𝜕𝑥 − 𝑈 𝑥

𝜕𝑓(𝑥, 𝑝)
𝜕𝑥 +

1
3
𝑑𝑈(𝑥)
𝑑𝑥 𝑝

𝜕𝑓(𝑥, 𝑝)
𝜕𝑝 = 0

upstream downstream

x=0

Consider 
a shock

We wish to solve the Parker equation

Solve this separately in the upstream (1) and downstream (2) regions.

𝜕
𝜕𝑥

𝜅1,2 𝑝
𝜕𝑓1,2(𝑥, 𝑝)

𝜕𝑥
− 𝑈1,2

𝜕𝑓1,2(𝑥, 𝑝)
𝜕𝑥

= 0

This has the general solution

𝑓1,2 𝑥, 𝑝 = 𝐴1,2 𝑝 exp 9𝑈1,2𝑥 𝜅1,2
+ 𝐵1,2(𝑝)



1. 𝑓1 −∞, 𝑝 = 𝑓((𝑝)

Subject to the following boundary conditions / constraints

3. 𝑓1 0, 𝑝 = 𝑓2(0, 𝑝)

2. 𝑓2 +∞, 𝑝 𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒

𝐵1 𝑝 = 𝑓((𝑝)

𝐴2 𝑝 = 0

𝐴1 𝑝 + 𝑓((𝑝) = 𝐵2(𝑝)

Giving:

𝑓1 𝑥, 𝑝 = 𝐴1 𝑝 exp 9𝑈1𝑥 𝜅1 + 𝑓((𝑝)

𝑓2 𝑥, 𝑝 = 𝐴1 𝑝 +𝑓((𝑝)

lim
$→&

$
'$

($ 𝜕
𝜕𝑥

𝜅 𝑝
𝜕𝑓(𝑥, 𝑝)
𝜕𝑥

− 𝑈 𝑥
𝜕𝑓(𝑥, 𝑝)
𝜕𝑥

+
1
3
𝑑𝑈(𝑥)
𝑑𝑥

𝑝
𝜕𝑓(𝑥, 𝑝)
𝜕𝑝

𝑑𝑥 = 0

To get A1(p), we integrate over small region near shock, giving

Term 1 Term 2 Term 3

(1)𝑥 < 0

𝑥 ≥ 0



Term 1

lim
$→&

𝜅2 𝑝
𝜕𝑓2(𝑥, 𝑝)

𝜕𝑥 )*($
− lim
$→&

𝜅1 𝑝
𝜕𝑓1(𝑥, 𝑝)

𝜕𝑥 )*'$
= − lim

$→&
𝐴1 𝑝 𝑈1exp( 9𝑈1 𝑥 𝜅1) )*'$

0

= −𝐴1 𝑝 𝑈1

Term 2

lim
$→&

𝑈 𝑥 𝑓(𝑥, 𝑝)
)*'$

)*($

= 0

Term 3

lim
$→&

$
'$

($ 1
3 (𝑈2 − 𝑈1)𝛿(𝑥)𝑝

𝜕𝑓(𝑥, 𝑝)
𝜕𝑝 𝑑𝑥 =

1
3 𝑈2 − 𝑈1 𝑝

𝜕𝑓2(𝑝)
𝜕𝑝 =

𝑈2 − 𝑈1
3 𝑝

𝜕
𝜕𝑝 𝐴1 𝑝 + 𝑓+(𝑝)



Combining the three terms leads to

−𝐴1 𝑝 𝑈1+
𝑈2− 𝑈1

3
𝑑𝐴1(𝑝)
𝑑 ln 𝑝

+
𝑈2− 𝑈1

3
𝑑𝑓𝑆(𝑝)
𝑑 ln 𝑝

= 0

Re-arranging, leads to

𝑑𝐴1(𝑝)
𝑑 ln 𝑝 + 𝛼𝐴1 𝑝 = −

𝑑𝑓𝑆(𝑝)
𝑑 ln 𝑝

where: 𝛼 =
3𝑈1

𝑈1− 𝑈2

Defining a new variable,                , it can be shown𝑦 = ln 𝑝

exp(−𝛼𝑦)
𝑑
𝑑𝑦 exp 𝛼𝑦 𝐴1(𝑦) = −

𝑑𝑓𝑆(𝑦)
𝑑𝑦

𝑑
𝑑𝑦 exp 𝛼𝑦 𝐴1(𝑦) = −exp(𝛼𝑦)

𝑑𝑓𝑆(𝑦)
𝑑𝑦



In terms of p, this is

exp 𝛼𝑦 𝐴1 𝑦 + 𝐶 = −Hexp(𝛼𝑦)
𝑑𝑓𝑆(𝑦)
𝑑𝑦

𝑑𝑦

𝐴1 𝑦 = −exp −𝛼𝑦 Hexp 𝛼𝑦
𝑑𝑓𝑆 𝑦
𝑑𝑦 𝑑𝑦 − 𝐶 exp −𝛼𝑦

𝐴1 𝑝 = −𝑝')H𝑝)
𝑑𝑓𝑆 𝑝
𝑑𝑝

𝑑𝑝 − 𝐶𝑝')

Since A1 must remain finite as p à 0, we require C = 0.  
Integrating by parts, and taking fSà0 as pà0, it can be shown

𝐴1 𝑝 = −𝑝') 𝑝)𝑓𝑆 𝑝 − 𝛼H𝑝)'&𝑓𝑆 𝑝 𝑑𝑝 = −𝑓𝑆 𝑝 + 𝛼 𝑝')H𝑝)'&𝑓𝑆 𝑝 𝑑𝑝



Inserting this into (1) on slide 6, we have, finally,

𝑓1 𝑝 = 𝑓𝑆 𝑝 + 𝑓2(𝑝) − 𝑓((𝑝) exp( 9𝑈1 𝑥 𝜅1)

𝑓2 𝑝 = 𝛼 𝑝')H𝑝)'&𝑓𝑆 𝑝 𝑑𝑝

𝑥 < 0

𝑥 ≥ 0



Case 1: 𝑓𝑆 𝑝 = 𝑄0𝛿(𝑝 − 𝑝0)

𝑓2 𝑝 = 𝛼𝑄0𝑝')𝑝0)'& =
𝛼𝑄0
𝑝0

𝑝
𝑝0

')
The standard DSA result

Case 2: 𝑓𝑆 𝑝 = L
0 𝑝 < 0

𝑓𝑆(𝑝0)
𝑝
𝑝0

'*
𝑝 ≥ 𝑝0

𝑓𝑆(𝑝)

𝑝𝑝0

∝ 𝑝'*

𝑓2 𝑝 =
𝛼

𝛼 − 𝛿 𝑓𝑆(𝑝0)
𝑝
𝑝0

'*
−

𝑝
𝑝0

')

𝛼 ≠ 𝛿

𝑓2 𝑝 = 𝛼𝑓𝑆(𝑝0)
𝑝
𝑝0

')
ln

𝑝
𝑝0 𝛼 = 𝛿



The solution is (see also Neergaard-Parker & Zank, 2012):

For the specific case in which the source is a power-law 
distribution, with spectral index, δ, we obtain for the 
downstream distribution:

𝑓1 𝑝 = 𝑓𝑆 𝑝 + 𝑓2(𝑝) − 𝑓((𝑝) exp( 9𝑈1 𝑥 𝜅1)

𝑓2 𝑝 = 𝛼 𝑝')H𝑝)'&𝑓𝑆 𝑝 𝑑𝑝

𝑥 < 0

𝑥 ≥ 0

where 𝛼 = *+!
+!,+"

fS (source 
spectrum)

δ = 5

f2 (shock 
accelerated 
spectrum)

U1/U2 = 4
α = 4

𝑓2 𝑝 =
𝛼

𝛼 − 𝛿 𝑓𝑆(𝑝0)
𝑝
𝑝0

!"
−

𝑝
𝑝0

!#

f (p)
fS (p0)


