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• The spiral pattern of magnetic field lines in the solar system results 
from a combination of effects:
• Outward expansion of the solar wind
• Solar rotation
• High-electrical conductivity of the solar-wind plasma
This is an excellent demonstration of Alfven’s “frozen-flux theorem”

• The Parker spiral field plays a critical role in the transport of solar-
energetic particles
• It may also play a role in the shape of the Heliosphere

THE PARKER SPIRAL
The magnetic field of interplanetary space



Alfven’s frozen (magnetic) flux theorem
• In ideal MHD, the evolution of the magnetic 

field (B) is governed by the magnetic 
induction equation

Where U is the plasma velocity
• One consequence of this equation is that the 

magnetic flux passing through a surface 
remains constant even as the surface changes 
due to plasma motions
• As a result, magnetic field lines are forced to move with the plasma.
• The plasma velocity may be effected by the field since the field provides a 

force on the plasma, but the field lines are always frozen into the flow in the 
limit of infinite electrical conductivity
• The Parker spiral is an excellent demonstration of the theorem

𝜕𝐵
𝜕𝑡

= 𝛻×(𝑈×𝐵)



The Parker spiral has a critical role in determining how energetic 
particles from the Sun arrive to Earth, and beyond

Cane, et al. 1988

CME-related events depend on the direction the 
CME is moving relative to the observer

Numerical 
simulation of the 
distribution 
function 
(contours) of SEPs 
associated with a 
solar flare several 
hours after the 
release of the 
particles

The two different 
plots are for two 
different values of 
cross-field 
diffusion
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The heliosphere is the cavity carved out of 
the local interstellar medium by the solar 
wind

There are several important boundaries

The general shape of the heliosphere is 
under debate

In one popular idea, the shape is 
determined partly by the magnetic field 
on the inside – the Parker spiral

“Croissant” shaped? 
(Opher et al., 2015, 2017)



Parker’s view of the heliosphere in 1961 – from an analytic formulation using “potential” flow.  

• The solar wind flows supersonically and nearly radially from the Sun to the termination shock
• beyond the termination shock, the flow is subsonic and follows stream lines that deflect back 

towards the tail of the heliosphere.

• The tail is likely VERY long!



Parker’s 
equation for 
the solar wind 
speed
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The Parker spiral field was derived 
in Parker’s famous solar-wind paper



Parker’s drawing of magnetic 
field lines from his derivation. 
This is Figure 6 of his paper

The derived magnetic field vector 
(Eq. 26 from his paper)

The assumed solar-wind velocity in the frame 
co-rotating with the Sun (Eq. 24 from his paper)



First spacecraft observations of the Parker spiral field

Ness & Wilcox, Science, 1965



Conceptual picture of the Parker spiral

• Open magnetic flux at the inner 
boundary is nearly radial

• The field is frozen into the 
plasma.

• As a plasma parcel moves 
outward with the solar wind, Vw, 
its “foot-point” is rooted at the 
Sun which rotates with the 
frequency Ω0.

• The resulting path of the field 
line in space is that of an 
Archimedean spiral.

VwΔt

Ω0Δt
Plasma parcel

Magnetic field line

Solar Wind, Vw

Solar rotation

Source surface 
(inner boundary)

Sun



Quantitative derivation
• The derivation of the Parker spiral is an example of a “kinematic model”: we 

assume a flow velocity vector and solve the magnetic induction equation to get 
the magnetic field.
• Consider the following flow velocity vector:

𝑈 = 1𝑅#Ω# sin 𝜃
8𝜙 𝑟 = 𝑅#

𝑉$𝑟̂ 𝑟 > 𝑅#

R0 is the radius of the inner boundary. 

Ω0 is the solar rotation frequency

r is heliocentric distance , θ is polar 
angle, and φ is the azimuth angle

Vw is the solar wind speed, which is 
assumed radial an constant in this 
example. (Parker did not assume this)

• The magnetic field is obtained by solving the 
magnetic induction equation, below, using 
this assumed flow speed

𝜕𝐵
𝜕𝑡 = 𝛻×(𝑈×𝐵)

R0Ω0 » 2 km/s        Vw» 400 km/s



• The “source surface” is used in so-
called “potential-field source 
surface models” of the coronal 
magnetic field.

• This is where the magnetic field is 
nearly radial from (or inward 
towards) the Sun

• This can be taken as the inner 
boundary in the Parker spiral 
derivation

• The actual value of R0 in the 
derivation is only important with 
regards to specifying the strength 
of the magnetic field at the inner 
boundary

The inner boundary – where does the coronal field end and 
the interplanetary field start?



Quantitative derivation (continued)
• Assuming that the magnetic field is in steady state, the magnetic induction equation requires 
Ñ x (U x B)=0. 



Quantitative derivation (continued)
• Assuming that the magnetic field is in steady state, the magnetic induction equation requires 
Ñ x (U x B)=0. Expressing the curl vector in spherical coordinates, it is straightforward to 
show that for r > R0, the solution is:

𝑟!𝐵" = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑅#!𝐵#

𝑟𝐵$ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 0

𝑟𝐵% = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑅#𝐵% 𝑅#

(There is no θ component of the field at r=R0)



Quantitative derivation (continued)
• Assuming that the magnetic field is in steady state, the magnetic induction equation requires 
Ñ x (U x B)=0. Expressing the curl vector in spherical coordinates, it is straightforward to 
show that for r > R0, the solution is:

• It is tempting to set the last constant to zero as well, since we have assumed the field is radial 
at the source surface. But … we have only said that it is “nearly” radial at the source surface! 
It turns out that it cannot be exactly radial in this particular example. Here is why: consider 
the electric field (E=-UxB/c) at and just barely above the source surface

𝑟!𝐵" = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑅#!𝐵#

𝑟𝐵$ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 0

𝑟𝐵% = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑅#𝐵% 𝑅#

𝐸 𝑟 = 𝑅# = −
1
𝑐
𝐵"𝑉% 0𝜃 = −

1
𝑐
𝐵#𝑅#Ω# sin 𝜃 0𝜃

𝐸 𝑟 = 𝑅# + 𝜖 =
1
𝑐 𝐵% 𝑅# 𝑉" 0𝜃 =

1
𝑐 𝐵%(𝑅#)𝑉&

0𝜃

These MUST be the 
same!  Thus, 
equating them gives:

𝐵% 𝑅# = −𝐵#
𝑅#Ω# sin 𝜃

𝑉&

(There is no θ component of the field at r=R0)



The final form of the Parker Spiral (Model #1)

• Thus, the final form for the magnetic field in this case is given by:

• This form differs slightly from that derived by Parker. 
• However, this form is the correct solution to the magnetic induction 

equation for our assumed flow speed, is internally consistent, and is 
consistent with the MHD equations in general.

𝐵% = 𝐵#(𝜃)
𝑅#
𝑟

"

𝐵& = 0

𝐵' = −𝐵#(𝜃)
𝑅#
𝑟
𝑅#Ω# sin 𝜃

𝑉$

B0 is a signed quantity, and depends on θ: 
The radial component of the field changes 
sign across neutral line at the Sun, which 
leads to a heliospheric current sheet in the 
solar wind. 

This dependence on θ does not effect the 
analysis that we have presented.



However …
• The previous form does not give a purely radial magnetic field at the inner boundary. There is 

a small azimuthal component.
• In order to have a purely radial field at the inner boundary, we must have an azimuthal 

component to the solar wind speed for r>R0.
• Thus, let us consider instead the following form for the plasma velocity:

• In order for the electric field to be continuous across the inner boundary, the azimuthal flow 
speed must be continuous. Thus, we require:

• But how does Vφ depend on r?
• Parker assumed it doesn’t and took it to be constant. But, this is NOT consistent with the 

conservation of angular momentum.

𝑈 = 1
𝑅#Ω# sin 𝜃 8𝜙 𝑟 = 𝑅#
𝑉$𝑟̂ + 𝑉' 8𝜙 𝑟 > 𝑅#

𝑉' 𝑅# + 𝜖 = 𝑅#Ω# sin 𝜃



Parker’s drawing of magnetic 
field lines from his derivation. 
This is Figure 6 of his paper

The derived magnetic field vector 
(Eq. 26 from his paper)

The assumed solar-wind velocity in the frame 
co-rotating with the Sun (Eq. 24 from his paper)

An important assumption which often is 
forgotten in the literature and in text books. This 
assumption is not consistent with the 
conservation of angular momentum



Consider the φ-component of the MHD momentum 
equation:
• The (ideal) MHD momentum equation is given by:

• Taking the φ component, assuming steady state, ignoring magnetic stresses, and 
assuming there is no φ dependence of the thermal pressure or gravity, we obtain 
(after using the spherical coordinate representation of the second term on the left)

• Uφ = constant is not a solution to this. Thus, Parker’s assumption does not satisfy 
conservation of angular momentum. 
• The solution gives the correct form of the azimuthal solar wind velocity (note that we 

use V notation instead of U to remain consistent with our previous derivation)

𝜕𝑈
𝜕𝑡

+ 𝑈 ? 𝛻𝑈 = −𝛻𝑃 +
1
𝑐
𝐽×𝐵 − 𝜌𝑔⃗ = −𝛻𝑃 +

1
4𝜋

𝛻×𝐵 ×𝐵 − 𝜌𝑔⃗

𝜕𝑈'
𝜕𝑟

= −
𝑈'
𝑟

𝑉' =
𝑅#
𝑟

𝑅#Ω# sin 𝜃



Quantitative derivation #2
• For this case, the kinematic model uses the following flow velocity vector:

𝑈 = H
𝑅#Ω# sin 𝜃 8𝜙 𝑟 = 𝑅#

𝑉$𝑟̂ + I𝑅# 𝑟 𝑅#Ω# sin 𝜃 8𝜙 𝑟 > 𝑅#

• The magnetic field is obtained by solving the magnetic induction equation, using this 
assumed flow speed.

• The r and θ components of the field are the same as in the previous model.
• The φ component is determined from:

−𝑟𝑉$𝐵' + 𝑟𝑉'𝐵% = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑅#𝑉' 𝑅# 𝐵# = 𝑅#"Ω#𝐵# sin 𝜃

⟹ −𝑟𝑉$𝐵' + 𝑟
𝑅#"Ω# sin 𝜃

𝑟
𝐵#

𝑅#
𝑟

"
= 𝑅#"Ω#𝐵# sin 𝜃



The final form of the Parker Spiral (Model #2)

• Thus, the final form for the magnetic field in this case is given by:

• This form has a radial magnetic field at the inner boundary and conserves angular 
momentum.
• Compare this with Parker’s result.

𝐵% = 𝐵#(𝜃)
𝑅#
𝑟

"

𝐵& = 0

𝐵' = −𝐵#(𝜃)
𝑅#
𝑟
𝑅#Ω# sin 𝜃

𝑉$
1 −

𝑅#
𝑟

"

This follows from Ñ•B=0



red – Model #2 form (angular momentum conserved)
black – Parker’s form

Field lines starting at the same point (at r = R0)



red – model #2 (angular momentum conserved)
black – Parker’s form

The difference in path-
length is fairly small



The difference in 
azimuth angle is 
very significant

R0=2.5Rsun

R0=10Rsun

This has important 
consequences for relating 
SEPs seen at 1AU with their 
source at the Sun



Impulsive Solar-Energetic Particle Events

Mason et al., 1999

• Impulsive SEP events seen at 1AU are often characterized by clear velocity dispersion signatures.
• resembles the “NikeÒ-swoosh” when plotted as a time vs. MeV/nuc. scatter plot

• That they are impulsive implies that whatever accelerates them does so on a time scale shorter than the 
transport time scale.

• Ideal for studying charged-particle transport in the interplanetary magnetic field between the Sun and Earth

H-Fe ions
ACE/ULEIS Observations at 1AU

Transport  in IMFFlare at Sun



Including magnetic stresses
• Recall the (ideal) MHD momentum equation:

• The second term on the right can also be included.
• The resulting derivation is not repeated here, but leads to yet another 

form of the field and solar-wind velocity. Given below:

𝜕𝑈
𝜕𝑡

+ 𝑈 ? 𝛻𝑈 = −𝛻𝑃 +
1
4𝜋

(𝛻×𝐵)×𝐵 − 𝜌𝑔⃗

𝑉' = 𝑟Ω# sin 𝜃

𝐿
𝑟"Ω# sin 𝜃

𝑀(" − 1

𝑀(" − 1

𝐵' =
𝑉'
𝑉$
𝐵% −

𝑅#"Ω#𝐵# sin 𝜃
𝑟𝑉$

𝐿 = 𝑅("Ω# sin 𝜃

𝑀( = 𝑉$/𝑉(
where

This is a constant

VA is the Alfven speed, 
which depends on r

RA is the Alfven radius, and is 
the location where MA=1



The Alfven radius, angular momentum conservation, and the 
“spin-down” rate of the Sun (e.g. “magnetic breaking”)

• When magnetic stresses are included, the magnetic field 
forces the solar wind to rotate rigidly with the Sun out to a 
location of RA. RA is about 10-15 solar radii (note: Parker Solar 
Probe will move inside this radius!)

• Beyond RA, the solar wind no longer rotates rigidly with the 
Sun, and the total angular momentum is lost with the solar 
wind.

• While the loss of solar mass due to solar wind is only a small 
fraction of the solar mass, the loss of angular momentum is 
significant enough that the solar rotation rate slows with time.

• “stellar spin down” is an important problem in astrophysics!
• Some key references:

Weber and Davis,  Astrophysical Journal,  148,  217, 1967
Priest, E. J., “Magnetohydrodynamics of the Sun”, Cambridge Univ. Press
Boyd, T.J.M  and J. J. Sanderson, “The Physics of Plasmas”, Cambridge University Press
Foukal, P. V., “Solar Astrophysics”, Wiley

Alfven radius

Field forces solar-wind 
to rotate with the Sun 
inside this radius

DIAGRAM NOT TO SCALE!



The Alfven radius, angular momentum conservation, and the 
“spin-down” rate of the Sun (e.g. “magnetic breaking”)

• When magnetic stresses are included, the magnetic field 
forces the solar wind to rotate rigidly with the Sun out to a 
location of RA. RA is about 10-15 solar radii (note: Parker Solar 
Probe will move inside this radius!)

• Beyond RA, the solar wind no longer rotates rigidly with the 
Sun, and the total angular momentum is lost with the solar 
wind.

• While the loss of solar mass due to solar wind is only a small 
fraction of the solar mass, the loss of angular momentum is 
significant enough that the solar rotation rate slows with time.

• “stellar spin down” is an important problem in astrophysics!
• Some key references:

Weber and Davis,  Astrophysical Journal,  148,  217, 1967
Priest, E. J., “Magnetohydrodynamics of the Sun”, Cambridge Univ. Press
Boyd, T.J.M  and J. J. Sanderson, “The Physics of Plasmas”, Cambridge University Press
Foukal, P. V., “Solar Astrophysics”, Wiley

Alfven radius

Field forces solar-wind 
to rotate with the Sun 
inside this radius

Re-solved the complete SW 
problem including magnetic 
stresses



From Jokipii & 
Parker, 1969

Another model, which includes fluctuations of 
the fluid velocity at the inner boundary.

In this case,  the fluid speed has the form:

the speeds δUθ and δUφ are “random” or 
turbulent speeds due to, for example, solar 
supergranulation

𝑈 =
𝛿𝑈! 𝜃, 𝜙, 𝑡 (𝜃 + 𝑅"Ω" sin 𝜃 + 𝛿𝑈# 𝜃, 𝜙, 𝑡 (𝜙 𝑟 = 𝑅"

𝑉$𝑟̂ 𝑟 > 𝑅"



SOHO/MDI Doppler image showing transverse 
motions associated with supergranulation Photospheric convection spectrum derived 

from observations by Hathaway et al. (2000)



The form of the field with fluctuations at the inner boundary (Model 
#3)
• The form for the magnetic field in this case is given by:

Where

𝐵% = 𝐵#(𝜃)
𝑅#
𝑟

"

𝐵& = −𝐵# 𝜃
𝑅#
𝑟
𝛿𝑈& 𝜃, 𝜙, 𝑡#

𝑉$

𝐵' = −𝐵#(𝜃)
𝑅#
𝑟
𝑅#Ω# sin 𝜃 + 𝛿𝑈' 𝜃, 𝜙, 𝑡#

𝑉$

This assumes B0 is uniform 
over the surface, but 
changes sign across the 
neutral line (leading to 
heliospheric current sheet)

This model is applicable only 
at large scales since it 
ignores magnetic stresses on 
the plasma𝑡# = 𝑡 −

𝑟 − 𝑅#
𝑉$



Model Interplanetary Field including Fluctuations Created 
by Supergranulation

Tc is the 
characteristic 
scale of 
supergranulation



Giacalone, Jokipii, & Mazur, ApJ Lett. 532, 2000

•This field effects the trajectories of 
energetic particles from solar flares

• In this model, the trajectories of 8 
keV/n to 20 MeV/n oxygen from an 
impulsive flare are determined by 
numerical integration of the equations 
of motion with the magnetic field 
discussed previously

•After ~1 day, ions were still present 
inside 1 AU and populated field lines 
spanning ~10º in longitude



• The transverse component of the 
magnetic field falls off only as 1/r

• Radial component as 1/r2

• This leads to a large difference 
between the simple Parker spiral 
field and that which includes large 
scale turbulence, especially at 
high (and low) heliographic 
latitudes

• This has implications for the basic 
structure of the heliosphere (and 
has not been implemented in 
global heliosphere models, to my 
knowledge)

Another important consequence of this model: the nature of the polar 
heliospheric magnetic field



Effect on the shape of the heliosphere?

The magnetic field at high heliographic 
latitudes does not look like the picture 
below 

The “Croissant” shaped Heliosphere
(Opher et al., 2015, 2017) assumes the field 
does look like that at the left. What would it 
look like using a more-realistic interplanetary 
field?



NASA Drive Center: Our Heliospheric Shield

https://sites.bu.edu/shield-drive/



Final comments

• Be mindful of your choice of “Parker spiral” magnetic field for 
whatever application you are interested

• Even in the “nominal Parker spiral”, there are 2 correct versions, 
and one version that is incorrect in that it does not conserve 
angular momentum. 

• Parker’s derived field does not conserve angular momentum, yet 
there are several textbooks that still use this model without 
acknowledging this basic caveat.

• Understand the assumptions, and their effect on the results, that 
go into any particular model!


