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THE PARKER SPIRAL
The magnetic field of interplanetary space

* The spiral pattern o agr;;}x(fleld lines in the solar system results
from a combination of effects:

e Outward expansjon of the solar wmd

 Solar rotation .
* High-electrical conduct|V|ty of the solar-wind plasma
This is an excellent demonstratlon of Alfven’s “frozen- theorem/
* The Parker spiral field plays a crltlcal role in the transport of solar-
energetic particles

* [t may also play a role in the shape of the Heliosphere



Alfven’s frozen (magnetic) flux theorem

* In ideal MHD, the evolution of the magnetic
field (B) is governed by the magnetic
induction equation

B

B o (ixB

Where U is the plasma velocity

* One consequence of this equation is that the
magnetic flux passing through a surface
remains constant even as the surface changes
due to plasma motions S

Sz

* As a result, magnetic field lines are forced to move with the plasma.

* The plasma velocity may be effected by the field since the field provides a
force on the plasma, but the field lines are always frozen into the flow in the
limit of infinite electrical conductivity

* The Parker spiral is an excellent demonstration of the theorem



The Parker spiral has a critical role in determining how energetic
particles from the Sun arrive to Earth, and beyond
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The heliosphere is the cavity carved out of
the local interstellar medium by the solar
wind

There are several important boundaries

loser to here)
Termination Shock
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The general shape of the heliosphere is
under debate .

-
In one popular idea, the shape is E Be liosheath s
determined partly by the magnetic fi

(outer) (inner)
on the inside — the Parker spiral |

\ Supersonic

“Croissant” shaped? solar wind

(Opher et al., 2015, 2017)
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Parker’s view of the heliosphere in 1961 — from an analytic formulation using “potential” flow.
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The solar wind flows supersonically and nearly radially from the Sun to the termination shock

beyond the termination shock, the flow is subsonic and follows stream lines that deflect back
towards the tail of the heliosphere.

The tail is likely VERY long!



DYNAMICS OF THE INTERPLANETARY GAS The Parker spiral field was derived
E. N. PARKER in Parker’s famous solar-wind paper
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ABSTRACT

We consider the dynamical consequences of Biermann’s suggestion that gas is often streaming out-
ward in all directions from the sun with velocities of the order of 500-1500 km/sec. These velocities of
500 km/sec and more and the interplanetary densities of 500 ions/cm? (10'4 gm/sec mass loss from the
sun) follow from the hydrodynamic equations for a 3 X 106° K solar corona. It is suggested that the
outward-streaming gas draws out the lines of force of the solar magnetic fields so that near the sun the
field is very nearly in a radial direction. Plasma instabilities are expected to result in the thick shell of
disordered field (107® gauss) inclosing the inner solar system, whose presence has already been inferred
from cosmic-ray observations.

I. INTRODUCTION

Biermann (1951, 1952, 1957a) has pointed out that the observed motions of comet
tails would seem to require gas streaming outward from the sun. He suggests that gas
is often flowing radially outward in all directions from the sun with velocities ranging
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Figure 5.2: The four classes of Parker outflow solutions for the solar wind.



Parker’s drawing of magnetic
field lines from his derivation.
This is Figure 6 of his paper

The derived magnetic field vector

(Eq. 26 from his paper)

B.(r, 0,8) =B (6,40)(3) ,

Bo(?’, 0) d)) =0 )

Bs(r, 0,¢) =B (6, ¢0)(vi>(r— b)(é)2 sin 0,

The assumed solar-wind velocity in the frame
co-rotating with the Sun (Eq. 24 from his paper)

Up = Uy v =0, Vo=w(7r—>b)sin 0,



First spacecraft observations of the Parker spiral field
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Conceptual picture of the Parker spiral

* Open magnetic flux at the inner
boundary is nearly radial Source surface

(inner boundary) so|ar Wind, V

 The field is frozen into the

plasma. Magnetic field line

* As a plasma parcel moves
outward with the solar wind, V,, noAt
its “foot-point” is rooted at the
Sun which rotates with the vV, A Plasma parcel
frequency Q,.

Solar rotation

* The resulting path of the field
line in space is that of an
Archimedean spiral.



Quantitative derivation

* The derivation of the Parker spiral is an example of a “kinematic model”: we
assume a flow velocity vector and solve the magnetic induction equation to get
the magnetic field.

* Consider the following flow velocity vector: Ry is the radius of the inner boundary.
7 R,Q, sin 9(]3 r =R, Q, is the solar rotation frequency
wa' r > RO

r is heliocentric distance, O is polar

* The magnetic field is obtained by solving the angle, and @ is the azimuth angle

magnetic induction equation, below, using

this assumed flow speed V,, is the solar wind speed, which is

assumed radial an constant in this
OB ~ example. (Parker did not assume this)

RoQo=~ 2 km/s V,,~ 400 km/s



The inner boundary — where does the coronal field end and
the interplanetary field start?

* The “source surface” is used in so-
called “potential-field source
surface models” of the coronal v

magnetic field. e R

* This is where the magnetic field is ’
nearly radial from (or inward '\

towards) the Sun \
Source surface —=

* This can be taken as the inner
boundary in the Parker spiral
derivation

* The actual value of R, in the
derivation is only important with
regards to specifying the strength
of the magnetic field at the inner
boundary



Quantitative derivation (continued)

* Assuming that the magnetic field is in steady state, the magnetic induction equation requires
V x (U x B)=0.



Quantitative derivation (continued)

* Assuming that the magnetic field is in steady state, the magnetic induction equation requires
V x (U x B)=0. Expressing the curl vector in spherical coordinates, it is straightforward to
show that for r > R, the solution is:

r2B, = constant = R;B,

rBg = constant = 0 (There is no 8 component of the field at r=R,)

rBy = constant = RyB4(R,)



Quantitative derivation (continued)

* Assuming that the magnetic field is in steady state, the magnetic induction equation requires
V x (U x B)=0. Expressing the curl vector in spherical coordinates, it is straightforward to

show that for r > R, the solution is:

r2B, = constant = R;B,

rBg = constant = 0 (There is no 8 component of the field at r=R,)

rBy = constant = RyB4(R,)

* |t is tempting to set the last constant to zero as well, since we have assumed the field is radial
at the source surface. But ... we have only said that it is “nearly” radial at the source surface!
It turns out that it cannot be exactly radial in this particular example. Here is why: consider

the electric field (E=-UxB/c) at and just barely above the source surface

. 1 ) 1 L
same! Thus, By(Ry) = —By 7
w

N 1 ~ 1 ~
E(r=Ry+¢€)= EB"’ (R)V,.0 = ZB"’ (Ry)V,, 0 equating them gives:



The final form of the Parker Spiral (Model #1)

* Thus, the final form for the magnetic field in this case is given by:

R, 2 B, is a signed quantity, and depends on O:
B, = By(60) (—) The radial component of the field changes

r sign across neutral line at the Sun, which

leads to a heliospheric current sheet in the
Bg =0 solar wind.
Ry Ry sinb
Bcp = —By(6) . v This dependence on 6 does not effect the
W analysis that we have presented.

* This form differs slightly from that derived by Parker.

* However, this form is the correct solution to the magnetic induction
equation for our assumed flow speed, is internally consistent, and is
consistent with the MHD equations in general.




However ...

The previous form does not give a purely radial magnetic field at the inner boundary. There is
a small azimuthal component.

In order to have a purely radial field at the inner boundary, we must have an azimuthal
component to the solar wind speed for r>R,,.

Thus, let us consider instead the following form for the plasma velocity:

= Roﬂo Sin 9$ r = RO
Vi + Ve 7> R

In order for the electric field to be continuous across the inner boundary, the azimuthal flow
speed must be continuous. Thus, we require:

V¢(RO + E) —_ RO‘Q‘O Sin H

But how does V,, depend on r?

Parker assumed it doesn’t and took it to be constant. But, this is NOT consistent with the
conservation of angular momentum.



Parker’s drawing of magnetic
field lines from his derivation.
This is Figure 6 of his paper

The derived magnetic field vector
(Eq. 26 from his paper)

An important assumption which often is
forgotten in the literature and in text books. This
assumption is not consistent with the
conservation of angular momentum

B,-(f, 0) d’) =B ( 9) (»bO)
Bﬂ(r, 0) ¢) =O )
B¢(7’, 03 ¢) =B ( 6: ¢0)

The assumed solar-wind velotity in the frame

Ur = U 19=0, ‘w=w(r—2>)sin b,

~—y -
.-——————_'



Consider the p-component of the MHD momentum
eguation:
* The (ideal) MHD momentum equation is given by:

ou 1 I
——+U- VU = —VP +~ ]><B pg = —VP+—(\7><B)><B—pg

* Taking the ¢ component, assuming steady state, ignoring magnetic stresses, and
assuming there is no ¢ dependence of the thermal pressure or gravity, we obtain
(after using the spherical coordinate representation of the second term on the left)

aUy Uy
or  r
* U, = constant is not a solution to this. Thus, Parker’s assumption does not satisfy
cOnservation of angular momentum.

* The solution gives the correct form of the azimuthal solar wind velocity (note that we
use V notation instead of U to remain consistent with our previous derivation)

R .
Vo = (T) Ry sin 6



Quantitative derivation #2

* For this case, the kinematic model uses the following flow velocity vector:
( PP
RyQysinO¢ r =R,

U= : -
VW’I”\' + (RO/T) ROQO sin @ ¢ r > RO

\

The magnetic field is obtained by solving the magnetic induction equation, using this
assumed flow speed.

The r and 8 components of the field are the same as in the previous model.
The ¢ component is determined from:

—1ViyBy + VB, = constant = RyVy(Rg)By = R§QoBysin 6

R5Q, sin 0] [ R,
Bo (5

2
= —rlWBy + 1 [ . —) ] = R%QyB, sin6



The final form of the Parker Spiral (Model #2)
* Thus, the final form for the magnetic field in this case is given by:
Ro\*
B, = By(6) (-2)

BQZO

This follows from VeB=0

RO RO‘Q‘O sin @ RO 2
By = —B 1— (20
¢ 0(9) r Viy [ (r)

* This form has a radial magnetic field at the inner boundary and conserves angular
momentum.

 Compare this with Parker’s result.

2
B,-(f, 0, ¢) =B(0, ¢0)('g) 7
Bo(r, 0,¢)=0,

By(r, 0,9) =B (0, d)o)(vim)(r— b)(%)z sin 0,




Field lines starting at the same point (at r = R;)

red — Model #2 form (angular momentum conserved)
black — Parker’s form




difference in pathlengths
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difference in azimuthal angle between correct and incorrect form

degrees

12

r/AU

The difference in
azimuth angle is
very significant

This has important
consequences for relating
SEPs seen at 1AU with their

source at the Sun



Impulsive Solar-Energetic Particle Events

* Impulsive SEP events seen at 1AU are often characterized by clear velocity dispersion signatures.
* resembles the “Nike®-swoosh” when plotted as a time vs. MeV/nuc. scatter plot

e That they are impulsive implies that whatever accelerates them does so on a time scale shorter than the
transport time scale.

* Ideal for studying charged-particle transport in the interplanetary magnetic field between the Sun and Earth
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Including magnetic stresses

e Recall the (ideal) MHD momentum equation:

—4+ U VU =-VP+ —(VXB)XB — pg
5 47T( ) pg

* The second term on the right can also be included.

* The resulting derivation is not repeated here, but leads to yet another
form of the field and solar-wind velocity. Given below:

L MZ —1 V, is the Alfven speed,
T‘Z.QO sin 6 4 MA — VW/VA which dependsonr

2 where

Ve = 1Qosinb

[ = R,%'QO sin@®  Thisis a constant

2 .
V¢ B. — Rg{oBo sin 6 Ra is the Alfven radius, and is
|74% " rV, the location where M,=1



The Alfven radius, angular momentum conservation, and the
“spin-down” rate of the Sun (e.g. “magnetic breaking”)

Alfven radius

When magnetic stresses are included, the magnetic field
forces the solar wind to rotate rigidly with the Sun out to a
location of R,. R, is about 10-15 solar radii (note: Parker Solar
Probe will move inside this radius!) -~

Beyond R,, the solar wind no longer rotates rigidly with the 3!
Sun, and the total angular momentum is lost with the solar
wind.

\
Source surface -

While the loss of solar mass due to solar wind is only a small AN
fraction of the solar mass, the loss of angular momentumis  ~Js—

— s e

significant enough that the solar rotation rate slows with time. S
“stellar spin down” is an important problem in astrophysics!

Some key references:
Field forces solar-wind

Weber and Davis, Astrophysical Journal, 148, 217, 1967 to rotate with the Sun
Priest, E. J., “Magnetohydrodynamics of the Sun”, Cambridge Univ. Press inside this radius
Boyd, T.J.M and J. J. Sanderson, “The Physics of Plasmas”, Cambridge University Press

Foukal, P. V., “Solar Astrophysics”, Wiley DIAGRAM NOT TO SCALE!



The Alfven radius, angular momentum conservation, and the
“spin-down” rate of the Sun (e.g. “magnetic breaking”)

Alfven radius

When magnetic stresses are included, the magnetic field
forces the solar wind to rotate rigidly with the Sun out to a
location of R,. R, is about 10-15 solar radii (note: Parker Solar
Probe will move inside this radius!) -~

Beyond R,, the solar wind no longer rotates rigidly with the 3!
Sun, and the total angular momentum is lost with the solar
wind.

\
Source surface -

While the loss of solar mass due to solar wind is only a small AN
fraction of the solar mass, the loss of angular momentumis  ~Js—

— s e

significant enough that the solar rotation rate slows with time. S
“stellar spin down” is an important problem in astrophysics!

Some key references:
Field forces solar-wind

Weber and Davis, Astrophysical Journal, 148, 217, 1967 to rotate with the Sun
Priest, E. J., “Magnetohydrodynamics of the Sun”, Cambridge Univ=R&ess inside this radius
Boyd, T.J.M and J. J. Sanderson, “The Physics of Plasmas”, Cambridge Uni L
Foukal, P. V., “Solar Astrophysics”, Wiley

Re-solved the complete SW
problem including magnetic
stresses



SUPERGRANULATION AND FIELD-LINE
Another model, which includes fluctuations of RANDOM WALK

the fluid velocity at the inner boundary.

TSoIar Wind
In this case, the fluid speed has the form:
(65U (6,6,000 + (Roo sin 0 + Uy (6,6,0) & 7= R
U=
| f o,
the speeds 6Ug and 06U, are “random” or
turbulent speeds due to, for example, solar
supergranulation | . « From Jokipii &

Parker, 1969



SOHO/MDI Doppler image showing transverse
motions associated with supergranulation

Photospheric convection spectrum derived
from observations by Hathaway et al. (2000)

304 D.H.HATHAWAY ET AL.
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Figure 3. The average observed power spectrum for the cellular photospheric flows in the full-disk
MDI data. The peak at £ ~ 120 represents supergranules. There are no significant features to indicate
that either mesogranules (£ ~ 600) or giant cells (£ < 30) are distinctly different from supergranules.



The form of the field with fluctuations at the inner boundary (Model
#3)

* The form for the magnetic field in this case is given by:
2

0
B, = By(0) (—) This assumes By is uniform
r
over the surface, but
B, = —B,(60) Ro 6Ug (8, ¢, tp) changes sign across the
6 — 70 r W, neutral line (leading to
, heliospheric current sheet)
5 5 (0 RoRoQosin8 + 86Uy (0, ¢, to)
¢ = —Bo(0) - -
This model is applicable only
Where at large scales since it
ignores magnetic stresses on
ty =t — r —Ro the plasma




Model Interplanetary Field including Fluctuations Created
by Supergranulation

1. =1 day 1T =2day Nominal Spiral
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Y (AU)

0 | 0.5
X (AU)

Giacalone, Jokipii, & Mazur,ApJ Lett. 532, 2000

*This field effects the trajectories of
energetic particles from solar flares

e In this model, the trajectories of 8
keV/n to 20 MeV/n oxygen from an
impulsive flare are determined by
numerical integration of the equations
of motion with the magnetic field
discussed previously

*After ~1 day, 1ons were still present
inside 1 AU and populated field lines
spanning ~10° in longitude



Another important consequence of this model: the nature of the polar
heliospheric magnetic field

The transverse component of the "ob
magnetic field falls off only as 1/r P
\"/:
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Radial component as 1/r?
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This leads to a large difference
between the simple Parker spiral —
field and that which includes large <
scale turbulence, especially at

high (and low) heliographic

latitudes
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This has implications for the basic
structure of the heliosphere (and
has not been implemented in

global heliosphere models, to my
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Effect on the shape of the heliosphere?

h .« field at hich heli i The “Croissant” shaped Heliosphere
I3 tietL:rc]jz%n dec;CIeCs r|1eot Igtoklﬁke tel'\leogirgt% rlec (Opher et al., 2015, 2017) assumes the field
below does look like that at the left. What would it

look like using a more-realistic interplanetary
field?

Streamlines

—_—

Magnetic Field Lines

re’mination Shock




NASA Drive Center: Our Heliospheric Shield
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Final comments

|”

Be mindful of your choice of “Parker spiral” magnetic field for

whatever application you are interested

Even in the “nominal Parker spiral”, there are 2 correct versions,
and one version that is incorrect in that it does not conserve
angular momentum.

Parker’s derived field does not conserve angular momentum, yet
there are several textbooks that still use this model without
acknowledging this basic caveat.

Understand the assumptions, and their effect on the results, that
go into any particular model!



