Part I : Coronal Magnetic Structure & Small-scale Transients

B. J. Lynch $1, 2$

1. Department of Earth, Planetary, and Space Sciences, University of California–Los Angeles

2. Space Sciences Laboratory, University of California–Berkeley

LWS Heliophysics Summer School 2024 Saturday, 17 Aug 2024, Boulder, CO

Outline

- **Introduction Material / Background**
	- Large-scale Magnetic Structure(s) of the Solar Corona
	- The Solar Wind & the Parker Spiral
	- The "Steady State" Solar Wind & Heliosphere
	- Magnetic Connectivity & Heliospheric Back-mapping
	- The Separatrix Web A Methodology for Quantifying Magnetic Topology
	- Solar Wind Composition Tracing the History of In-Situ Solar Wind Plasma
- **Magnetic Reconnection in the Solar Corona**
	- Coronal Dynamics & Generation of Small-scale Solar Wind Transients
	- Helmet Streamer Blobs, Pseudostreamer Outflows, Etc.
- **Assembling the Building Blocks** → **An Illustrative Example: 2003 April 15-May 13 (CR 2002)**
	- Magnetic Helicity–Partial Variance of Increments (*Hm*–PVI) Analysis
	- Helmet Streamer Wind Intervals
	- Pseudostreamer Wind Intervals
	- Statistics of Coherent Magnetic Structure(s) w/in S-Web Associated Slow-to-Moderate Speed Solar Wind Intervals
- **Summary & Conclusions**

Coronal Magnetic & Global Solar Wind Structure

[[]McComas et al.2008]

Coronal Magnetic & Global Solar Wind Structure

"It is evident from eclipse photographs that gas-magnetic field interactions are important in determining the structure and dynamical properties of the solar corona and interplanetary medium." [Pneuman & Kopp 1971]

Global field structure more-or-less a magnetic dipole. How do you get a solar corona with helmet streamers? Just heat the plasma! (Just "solve" the coronal heating problem). Parker's famous 1958 isothermal solar wind solution is really all you need to create open magnetic flux regions over the poles and closed flux around the global polarity inversion line.

30

Dipole field, no solar wind

Dipole field, Parker solar wind

heir minimum points at the same value of ξ . Thus we mu $\frac{1}{2}$, or $\psi_0 - \ln \psi_0 = 2\lambda - 3 - 4 \ln \frac{\lambda}{2}$. 900 800 2×10^{7} 700 sec 600 15×10^{6} $\frac{\epsilon}{2}$ 500 1×10^{6} K $\frac{1}{2}$ 400

[Owens 2020 after Pneuman & Kopp 1971] [Parker 1958]

 05×10^{6} °K

Coronal Magnetic & Global Solar Wind Structure

The Sun is obviously more complex than a simple global dipole. What are the second-largest closed flux structures? Coronal pseudostreamers (unipolar streamers) \rightarrow just make the closed flux a bit smaller and embed it in an open-field region.

In terms of the simplest magnetic field model, the potential field source surface [PFSS; Altschuler & Newkirk 1969; Wang & Sheeley 1992], you can "mimic" open field regions by imposing $\mathbf{B} = (B_r, 0, 0)$ at the source surface R_{ss} . Pseudostreamer flux systems close well before Rss whereas helmet streamers close at R_{ss} .

How good is the PFSS model? It's an extremely simplified model but given the observed photospheric magnetogram data as the lower boundary condition, can generate PFSS solutions for each 27.25 day period (Carrington Rotation) and look at solar cycle evolution. The PFSS model does give global magnetic field structures that reflect some aspects of the overall complexity! Is it right? No. Is it good enough? Depends on what you're trying to do---it does generate helmet streamer and pseudostreamer structures!

Solar Wind Composition: Tracing Plasma History

$$
\frac{dy_i}{dt} = n_e \left[y_{i-1}I_{i-1} + y_{i+1}R_{i+1} - y_i(I_i + R_i) \right] + y_{i-1}P_{i-1} - y_iP_i
$$

 y_i = (fractional) ion density at charge state *i I i* , *Rⁱ* = Ionization, Recombination rates for charge state *i Pⁱ* = Photoionization for charge state *i*

The Parker Spiral: Structure of the Inner Heliosphere

Assume the corona rotates rigidly at angular frequency Ω . Then the PFSS coronal field model solution at *R_{ss}* (which is purely radial) can be extended into the heliosphere, taking on an Archimedean spiral shape, i.e. the "Parker spiral".

$$
\frac{B_{\phi}(r,\theta,\phi)}{B_{r}(r,\theta,\phi)}\!=\!\frac{v_{\phi}(r,\theta,\phi)}{v_{r}}\!=\!\frac{-\Omega r {\rm sin}\theta}{v_{r}}
$$

[Owens 2020, updated from Owens & Forsyth 2013]

Can calculate the expected angle of the heliospheric magnetic field at 1 AU and get \sim 45° for "slow" solar wind \sim 400 km/s, which is more-or-less what is observed!

We now have all the pieces to "connect" in-situ solar wind measurements to where they originate in the solar corona

The "Steady State" Solar Wind Picture

University of Michigan Space Weather Modeling Framework (SWMF) --- one of the most sophisticated, state-of-the-art 3D MHD codes for coronal and heliospheric modeling!

Alfven Solar Wind Model (AWSoM) developed by van der Holst et al. [2014] and colleagues use turbulent dissipation/wave-heating for a more realistic "coronal heating" temperature. Start w/ synoptic magnetogram, heat corona, get 3D density, temperature, velocity distributions throughout inner heliosphere.

The "Steady State" Solar Wind Picture

Once you have density, velocity, temperature everywhere, can combine these with ionic charge state calculations. E.g., Szente et al. [2022] have used SWMF/AWSoM to model fully 3D ionic charge state distributions for direct comparison with in-situ observations.

Closed-field plasma within helmet streamer flux systems show elevated O^{7+}/O^{6+} (>1.0), low C^{5+}/C^{6+} (or elevated C^{6+}/C^{5+}), and elevated < Q_{Fe} > (>12+). Therefore, plasma originating in closed-flux regions will have distinct composition signatures!

 C^{5+}/C^{6+}

 $.4E + 01$

 $5.2E + 00$

6.8E-01 9.6E-02

5+/C6+

Magnetic Connectivity: Heliospheric Back-Mapping

The Separatrix Web – Quantifying Magnetic Topology

Squashing factor developed by **Titov** [2007] defined as $Q = N^2/\Delta$

$$
Q = \frac{N^2}{\Delta} = \left(\frac{B_r^*}{B_r} \frac{R_*^2}{R_\odot^2}\right) \left[\left(\frac{\sin\Theta}{\sin\theta} \frac{\partial\Phi}{\partial\phi}\right)^2 + \left(\sin\Theta \frac{\partial\Phi}{\partial\theta}\right)^2 + \left(\frac{1}{\sin\theta} \frac{\partial\Theta}{\partial\phi}\right)^2 + \left(\frac{\partial\Theta}{\partial\theta}\right)^2 \right]
$$

Measure field line divergence between field line starting point $(R_{\odot}, \theta, \phi)$ and ending point (R^*, Θ, Φ) . Regions of high Ω = separatrix surfaces between flux systems: accumulate STRONG current densities, so favorable sites for magnetic reconnection!

The Separatrix Web – Quantifying Magnetic Topology

****Q-Maps are now a standard data product from HMI team!* **Calculated from PFSS solutions using HMI & MDI synoptic maps: http://hmi.stanford.edu/QMap/**

Squashing factor developed by **Titov** [2007] defined as $Q = N^2/\Delta$

$$
Q = \frac{N^2}{\Delta} = \left(\frac{B_r^*}{B_r} \frac{R_*^2}{R_\odot^2}\right) \left[\left(\frac{\sin\Theta}{\sin\theta} \frac{\partial\Phi}{\partial\phi}\right)^2 + \left(\sin\Theta \frac{\partial\Phi}{\partial\theta}\right)^2 + \left(\frac{1}{\sin\theta} \frac{\partial\Theta}{\partial\phi}\right)^2 + \left(\frac{\partial\Theta}{\partial\theta}\right)^2 \right]
$$

Measure field line divergence between field line starting point $(R_{\odot}, \theta, \phi)$ and ending point (R^*, Θ, Φ) . Regions of high Ω = separatrix surfaces between flux systems: accumulate STRONG current densities, so favorable sites for magnetic reconnection!

The Separatrix Web – Quantifying Magnetic Topology

Magnetic Reconnection (in the Solar Corona)

[Edmondson & Lynch 2017]

Magnetic Reconnection (in the Solar Corona)

Helmet streamer cusps \rightarrow HCS. Y-type null point + boundary perturbations = reconnection

Separatrix surface between open and closed:

- drastic change in connectivity
- favorable site for currents
- system trying to shed stress/dissipate current structures (to open fields)
- **generation of fine-scale structure!**

Dynamic Separatrix Web – Magnetic Reconnection

Helmet Streamer "Blobs" (Small Magnetic Flux Ropes)

~90 min Structures in Coronagraph + In-situ Data

Viall & Vourlidas [2015] found "a train of ~90 min structures" in STEREO/COR2 white-light coronagraph data

~90 min Structures in Coronagraph + In-situ Data

mposition also has

tures at smaller scales

envelope), Kepko et al.

d ~90 min structure in

Murphy et al. [2020]

all FRs in MESSENGER

pared with earlier 1AU

deng et al. [2008] and

Moldwin [2008,2010].

The sense of t In addition to periodic proton density structures [Viall et al. 2008, Kepko et al. 2020], Viall et al. [2009] showed that alpha composition also has periodic structures at smaller scales (note 90 min envelope), Kepko et al. [2016] showed ~90 min structure in He, C, O, and Murphy et al. [2020] looked at small FRs in MESSENGER data and compared with earlier 1AU results from Feng et al. [2008] and Cartwright & Moldwin [2008,2010].

Kepko et al. [2016]

 $\frac{1}{\sigma}$

 $\frac{1}{\theta}$

Kepko

[2016]

x Ropes) r^{10} Helmet Streamer "Blobs" (Small Magnetic Flux Ropes)

L eft (right) pan-

velocit y (densit y).

Lynch (2020) .

els show radial

A dapted from

generated plas-

moid flux ropes

A dapted from

Higginson &

Lynch (2018) .

(b) Distribution of Magnetic Island Flux Ropes within Equatorial HCS

Helmet Streamer "Blobs" (Small Magnetic Flux Ropes)

[Lynch 2020]

Helmet Streamer "Blobs" (Small Magnetic Flux Ropes)

Pseudostreamer Reconnection Outflows

One or more magnetic null points, current layers build up on separatrix boundaries, onset of reconnection to re-distribute stress/current density \rightarrow bulk plasma ouflow w rxn jet

 \rightarrow structured component from plasmoids

 (a)

 0.0

 2.5

Pseudostreamer Reconnection Outflows

Wyper et al. [**2022**] simulation of plasmoid-unstable interchange reconnection at pseudostreamer current sheet. Reconnection outflow/waves propagate along S-Web arcs!

[Wyper et al. 2022]

Br

 -0.9

 $1₀$

 0.4

 0.0

 1.0

 $0.5 \equiv$

 -0.2 $^{\circ}$

മ്

B⊥

|B|

 -15

Pseudostreamer Reconnection Outflows

An Illustrative Example: 2003 Apr 15–May 13

- Every interval has "slower than average" speed (during this CR)
- Most intervals have higher proton density
- "" have higher Alpha to proton abundance ratio
- "" elevated C, O, Fe charge states
- Some have higher Fe/O elemental abundance
- \rightarrow properties of in-situ plasma that must be related to coronal source region

Heliospheric Back-mapping to Coronal Source Region(s)

Every Interesting SW Interval \rightarrow HS/HCS or PS Wind

[Lynch et al. 2023]

[Lynch et

 $\frac{1}{\sigma}$

Coherent Magnetic Structure via H_m-PVI Method

Use the **Pecora et al.** [**2021**] Magnetic Helicity–Partial Variance of Increments method to identify coherent magnetic structures:

Helicity content (below scale ℓ) estimated with 2-pt correlation function [**Matthaeus & Goldstein 1982**]:

$$
H_m^-(x,\ell) = \int_0^\ell ds \ C_{jk}(x,s) \ f(s)
$$

$$
C_{jk}(x,s) = \int_{x-\frac{W}{2}}^{x+\frac{W}{2}} d\xi \ [B_j(\xi+s)B_k(s) - B_j(s)B_k(\xi+s)]
$$

$$
f(s) = \frac{1}{2} - \frac{1}{2}\cos\left(\frac{2\pi s}{W}\right)
$$

Partial Variance of Increments [PVI, e.g. **Greco et al. 2018**] used to identify boundaries/discontinuities:

$$
PVI(t, \tau) = \frac{|\Delta \mathbf{B}(t, \tau)|}{\sqrt{\langle |\Delta \mathbf{B}(t, \tau)|^2 \rangle}}
$$

$$
\Delta \mathbf{B}(t, \tau) = \mathbf{B}(t + \tau) - \mathbf{B}(t)
$$

2023 [Lynch et al. 2023] $\frac{1}{\sigma}$ \mathbf{t} [Lynch

H_m-PVI Statistics by Interval Type (HS vs. PS)

2023 [Lynch et al. 2023] $\frac{1}{\sigma}$ \ddot{e} [Lynch

Heliospheric Back-mapping Revisited

Heliospheric Back-mapping Revisited

Now both Br/HCS transitions and S-Web arcs show up clearly! 140 135 130 125 120 Sample Q-Map values over entire range [const, Psw]

Define a $q(t)$ = mean(slog $Q(\phi)$) and δq = stddev(slog $Q(\phi)$) time Average slogQ *q* +_ d*q* at Rss series. Presence of S-Web arc leads to high δq ?!

DOES THIS WORK AT ALL FOR ANYTHING OTHER THAN CR2002 ??

Heliospheric Back-mapping Revisited

Quick PSP Example of S-Web Solar Wind

manuscr ipt submitted to *J GR : Space Physics* **Badman et al.** [**2023**] looked at PSP Encounter 10 & PFSS Back-Mapping (CR2251)

Three distinct streams from sequence of low-latitude coronal holes

manuscr ipt submitted to *J GR : Space Physics*

→ Boundaries separating each SW "source" are pseudostreamers and their S-Web arcs!

Quick PSP Example of S-Web Solar Wind

$\frac{q}{10002}$ $\frac{0.0}{\sqrt{6}}$ (km/s) 200.0

[Wyper et al. 2022]

Summary & Conclusions

- Coronal helmet streamer boundaries represent separatrices between open and closed flux systems; even the simplest MHD solar wind model produces a complex set of magnetic reconnection dynamics at streamer cusp & HCS
- Intermittent magnetic island/small FR/plasmoid generation potentially fills entire HCS
- Ionic and elemental charge states during CR2002 highly correlated with S-web arcs/Q-map features and HCS/sector boundary structure. Needs more quantitative analysis
- N α and/or N α /Np is apparently a good proxy for elevated C, O, Fe charge states in the slow solar wind
- Pseudostreamer slow wind also shows enhanced composition variation + broader STE PADs
- Need more simulations of dynamic pseudostreamer evolution, reconnection, and solar wind outflow
- **The characteristic widths of coherent magnetic structures identified from** *Hm***–PVI in HS and PS wind are:** $w_{\text{HS}} = 0.94 \pm 0.02$ hr, $w_{\text{PS}} = 0.92 \pm 0.22$ hr from H_m autocorr and a "streamer blob" component at τ_{HS} = 1.625-2.125 hr from PVI waiting time—in excellent **agreement with the Viall et al. ~90 min timescales of periodic density structures!!!**

