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A bit about me

❖ Grew up in Vancouver, BC, Canada 

❖ BS: Electrical Engineering, University of Southern 

California

❖ MS/PhD: Electrical Engineering, Stanford University

❖ Postdoc (< 2 years) at Boston University

❖ Research Associate (4 years) back at Stanford

❖ Now 9 years at University of Colorado Boulder, 

Aerospace Engineering Sciences

❖ Tenured in 2022

❖ Sabbatical in 2023: Orléans, France

❖ Associate Chair for Graduate Studies: 2023—present
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The LAIR The Lightning, Atmosphere, Ionosphere, 

and Radiation Belts (LAIR) Research Group
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PhD students Research Engineers
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Carolina
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Julia
Claxton

James
Cannon

Paraksh
Vankawala

Sebastian
Wankmueller

Joe
Buescher

Undergraduates

Ash
Tribble

Anant
Telikicherla

Postdoctoral
Scholars

Alex
Shane
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Cunningham

Siwani
Regmi

Tai
Matayay

Ryan
Dick

University of Colorado Boulder

LAIR Alumni:
- 4 postdocs that have moved on
- 6 PhDs graduated
- 4 MS theses
- 20+ undergraduates
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The LAIR Research Overview
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CubeSats for Space ScienceModeling, Simulation, 
and Data Analysis

Instrumentation
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CubeSats for Space Science

❖ Figure in Talks folder; update with new SC CAD
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Ionosphere Lectures: Goals

❖ Understand basic physics of the Earth’s ionosphere

❖ Origin, composition, layers

❖ Variations: diurnal, seasonal, solar cycle, plus other anomalies

❖ Effects of the Ionosphere on Spacecraft and technology

❖ Radio communications and GPS

❖ Comparative Ionospheres: Jupiter and Mars
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Origin of the Ionosphere
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❖ The Ionosphere is a product of two 

regions: the Sun and the Atmosphere
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Absorption in Earth’s Atmosphere
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Atmospheric Heating

❖ Though less that 1.5% of TSI, wavelengths < 300 nm are 

primary source of atmospheric heating from 15—500 km.

❖ Excitation; dissociation; ionization

❖ Relaxation, association, recombination —> heat
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Ionization thresholds

❖ Require a minimum energy to free an electron from an 

atom or molecule

❖ Require a photon with at least this minimum energy: 

“ionizing radiation” or sometimes just “radiation”

❖ Ionization cross section provides energy-dependent 

picture of ionization probability
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Ionization Energy
Minimum

photon wavelength

H 13.6 eV 91 nm (910 A)

He 24.6 eV 50 nm

O 13.62 eV 91 nm

Ar 15.76 eV 79 nm

N2 15.6 eV 80 nm

O2 12.1 eV 103 nm
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Earth’s Ionosphere

❖ Right: ionization density changes by 100x day vs 

night, and 10x or more with solar cycle
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❖ Ionosphere altitudes and layers have a lot to 

do with where solar radiation is absorbed!
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Ionosphere Composition and Density
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Why is the Ionosphere finite in altitude? 

❖ The atmosphere is exponentially increasing all the way to the ground. 

What about the ionosphere? 
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Chapman Layer
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Chapman Layer

❖ Production higher, and lower in altitude, for lower zenith angle (i.e. noon)

❖ Peak in production is near where intensity is about half the incident value

15



Heliophysics Summer School 2024: The Ionosphere

Ionization Chemistry

❖ Ionosphere is in equilibrium when ionization production and loss mechanisms balance

❖ Production: photoionization; energetic particle precipitation; collisions

❖ Loss: recombination; charge exchange; chemistry
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Electron Density Profile

❖ Balancing production (ionization) with loss (recombination), we get an equilibrium 

electron (or ion) density below

❖ Higher, less dense for increasing zenith angle

❖ Reminder: this is for a single species, 

and single photon wavelength!
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Ionosphere Layers

❖ Different wavelengths are absorbed at different altitudes, 

by different species

❖ I(z) depends on wavelength-dependent absorption for each 

species

❖ P(z) depends on wavelength-dependent ionization cross 

sections for each species

❖ Right: top white curve is I(z) decay by e-0.5; 

middle white curve by e-1; 

bottom white curve by e-1.5

❖ Red areas: I(z) is basically I∞

Black areas: I(z) is basically zero
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Another way of looking at it

❖ Ionosphere layers depend on composition 

(atmosphere) and radiation (solar spectrum 

and flux)

❖ D, E, and F regions are dominated by 

different ions, depending on the neutral 

species
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Primary Production / Loss channels
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E-region
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F-region
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F-region
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D-region

❖ D-region is known for low electron densities, light and heavy 

positive and negative ions, 

and complex chemistry.

❖ Production:

❖ N2 + γ ⟶ N2
+ + e−

❖ O2 + γ —> O2
+ + e−

❖ NO + γ —> NO+ + e−

❖ Negative ions formed by attachment processes:

❖ O2 + e− + O2 —> O2
− + O2

❖ O2 + e− —> O2
− + γ

❖ Detachment:

❖ O2
− + γ —> O2 + e−

❖ O2
− + O2 —> O2 + e− + O2
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D-region chemistry and “cluster ions”

❖ D-region also contains heavy water cluster ions of the form 

(H2O)nH+

❖ Requires more complex chemistry models to evaluate ne profiles
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Glukhov Pasko Inan (GPI) 2009 model:

Sodankyla Ion and Neutral Chemistry (SIC) model:
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Topside Ionosphere

❖ Above ~350 km, densities are so low that ions 

are not dominated by chemistry, but diffusive 

equilibrium
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Summary of Layers

❖ Layers are dominated by different ions

❖ Ion densities controlled by balance between production and 

loss; depends on chemical reactions in each altitude range

❖ Decay of layers at night depends on recombination rates 

and densities: low densities at high altitudes mean few 

collisions
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Ionosphere Temperatures

❖ Below 110 km, temperatures are made equal 

by collisions

❖ Above ~110 km, collisions are rare, so each 

species gets its temperature through different 

heating processes (radiation absorption, 

convection, etc) 

❖ Above ~110 km: ions, electrons, and neutrals 

have different temperatures

❖ Remember: this simply means they have 

different velocity / energy distributions
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Ionosphere Variability
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Transport

❖ Variety of processes move plasma in the ionosphere:

❖ Winds: neutral winds drag ions along with them, if collision frequency is high enough

❖ Drifts: various forces cause plasma to “drift”: electric and magnetic fields; gravity; pressure; etc.

❖ These contribute to complex spatial and temporal variations in the ionosphere

30



Heliophysics Summer School 2024: The Ionosphere

Global variation: Snapshots
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Global variation: Snapshots

❖ TEC = Total electron content; integrated in altitude, 1 TECU = 1016 el/m2
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foF2 and hmF2

❖ We often characterize the ionosphere by its peak 

density, foF2, and the altitude where that occurs, 

hmF2

❖ foF2 is a frequency in MHz. related to electron 

density: 

❖ hmF2 is simply altitude in km
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Solar Cycle Variation

❖ Densities are much higher (order of magnitude) at 

solar maximum compared to solar minimum

❖ Higher EUV / X-ray fluxes lead to higher ionization 

rates
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Equatorial Electrojet

❖ Plasma physics involving B-field lead to an intense current that 

flows East in the dayside ionosphere

❖ Restricted to narrow region in latitude; 110-130 km altitude
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Equatorial Anomaly

❖ Due to the EEJ current, an electric field arises

❖ E x B leads to a drift (known as E x B drift) in the vertical direction

❖ Plasma rises, but then above some altitude, falls back down along field lines

❖ “Fountain effect” 
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Magnetic field
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Equatorial Anomaly
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Equatorial Spread-F

❖ Plasma instabilities that occur right after sunset cause the F-region to take on an array of structures

❖ Times scales from seconds to hours

❖ Spatial scales from cm to tens of km
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Equatorial Plasma Bubbles

❖ Instability due to heavier fluid on top of lighter fluid:

❖ Leads to rising bubbles with detailed structure and wide range 

of spatial scales, and large density variation
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Mid-latitudes: Sporadic E

❖ Sporadic increase in E-region electron density, 

primarily at night, by orders of magnitude

❖ “Patch” of increased ionization

❖ Still not clear what the spatial scale is

❖ Observed by radio wave scattering

❖ Effect is most likely due to shear winds driving 

metal ions (from meteors) into thin layer
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High-Latitudes: Polar Cap Absorption

❖ Solar Energetic Protons (SEPs) deposit their energy in the D-region of the ionosphere

❖ Flow along open magnetic field lines

❖ Increased D-region density adds to absorption of radio waves (discussed a bit later)
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Storm-time variability: Gannon Storm 2024

❖ TIE-GCM model runs

❖ Considerably higher TEC at high latitudes: energetic particle precipitation (EPP)

❖ TEC at low latitudes not significantly different here…

❖ Equatorial anomaly prominent in evening sector, less so in dawn / noon sector
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Storm-time variability: Gannon Storm 2024

❖ TIE-GCM model runs

❖ Storm associated with 

increased EUV, X-ray: leads 

to higher ionization rates

❖ Higher temperature in the 

thermosphere raises the entire 

ionosphere
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Lots more to the Ionosphere / Atmosphere system…
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IRI model

❖ International Reference Ionosphere: IRI

❖ https://ccmc.gsfc.nasa.gov/modelweb/models/iri2012_vitmo.php

❖ IRI is ionosphere equivalent to MSIS

❖ Empirical model; major data sources are the worldwide network of ionosondes, powerful incoherent scatter radars (Jicamarca, Arecibo, 

Millstone Hill, Malvern, St. Santin), ISIS and Alouette topside sounders (spacecraft), in situ instruments flown on many satellites and 

rockets.

❖ IRI is updated yearly during special IRI Workshops at COSPAR and URSI meetings
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https://ccmc.gsfc.nasa.gov/modelweb/models/iri2012_vitmo.php
http://irimodel.org/docs/iri_workshops.html
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Plasmasphere

❖ Boundary between Topside ionosphere and Plasmasphere: where thermal pressure and magnetic pressure are equal

❖ Plasma becomes confined by B-field

❖ Sometimes defined by altitude where H+ (protons) become dominant ion

47
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Ionosphere Effects: 
Radio Wave Propagation
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Radio Wave Propagation

❖ Time for some (more) plasma physics!

❖ Plasma oscillations

❖ Plasma frequency

❖ index of refraction (from Maxwell’s equations)

❖ Add collisions: absorption

❖ MUF, LUF, X-ray effect
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Plasma
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Reflection of EM Waves

❖ Plasma frequency 𝜔p directly related to electron density

❖ Radio waves above 𝜔p pass through the ionosphere; electrons cannot respond fast enough

❖ Radio waves below 𝜔p are reflected; electrons are “shaken” and re-radiate
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❖ Implications: 

❖ must use frequencies above 𝜔p to 

talk to satellites

❖ Can communicate over-the-horizon 

with frequency near / below 𝜔p
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Over-the-horizon radar or communication
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Index of Refraction

❖ As a radio wave propagates from one 

medium to another, it’s propagation 

direction is refracted, based on the 

indices of refraction, n1 and n2. 
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Ionospheric Refraction

❖ We can treat the ionosphere as 

successive layers, and look at refraction 

from one layer to the next

❖ Continuous refraction

❖ End result: ray “bends” and turns back 

to the ground. Not a hard reflection!
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Critical Frequencies in the Ionosphere

55

❖ In the F-region, fc ~ 3—30 MHz

❖ higher frequencies pass through the ionosphere, 

with some refraction

❖ over-the-horizon radio

❖ In the E-region, fc ~ 1—2 MHz

❖ but sporadic-E increases fc up to 100 MHz

❖ In the D-region, our model breaks.

❖ Lots of neutrals means high collision frequency; 

our index of refraction is more complicated.

❖ Absorption of MHz 

waves (next)

❖ Reflection of waves 

below ~100 kHz; VLF 

waves (below ~50 kHz) 

used for long-range 

communications with 

submarines
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Waves in Plasmas

❖ We need three equations to describe wave propagation in a cold plasma. 

Ampere’s Law and Faraday’s Law (i.e. Maxwell’s equations):

❖ And the Langevin equation (simply F = ma):
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Index of refraction in a cold plasma

❖ In general, index of refraction is given by the Appleton-Hartree equation:
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D-region absorption

❖ As electrons get excited by waves with f < fc, the collide with neutrals

❖ Some of the EM wave energy gets transferred to heat; radio waves suffers absorption

❖ How much absorption? 
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Collision Frequency? 

❖ Electrons (few) randomly collide with neutrals (many)

❖ Radio wave energy converts to electron kinetic energy and then to neutral thermal energy (i.e., neutrals 

are “heated”)

❖ This is collisional heating, and a sink for radio wave energy
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❖ Collision frequency depends on neutral 

density (N2, O2) and on electron 

temperature

❖ Does not depend on electron density; why?
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D-region absorption

❖ Shown here: absorption of 30 MHz radio 

wave due to electron precipitation from 

the radiation belts

60

❖ Riometer: passive instrument that measures D-region 

absorption by monitoring cosmic noise at ~30 MHz
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Sudden Ionospheric Disturbances (SIDs)

❖ SID is ionospheric response to a solar flare (X-rays)

❖ X-rays ionize the D-region, causing a huge increase in D-region electron density (orders of magnitude)

❖ Higher ne leads to higher radio wave absorption

❖ Lower D-region reflection height perturbs VLF signals
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Short-Wave Fade

❖ Issue for over-the-horizon radar

❖ There is a maximum frequency we can use, above 

which waves pass through the F-region

❖ There is a minimum frequency we can use, because 

❖ lower frequencies 

suffer too much absorption

❖ Usable “Frequency Window”

❖ After a major X-ray flare, Absorption can increase to 

prevent any useful communication
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𝑑𝐴

𝑑𝑙
= 4.6 × 10−5

𝑛𝑒𝜈

𝜔2
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GPS and TEC

❖ Even for frequencies above fc, the ionosphere 

introduces some interesting effects

❖ Small change in index of refraction from

❖ Expand in Taylor series: 

❖ Cut off after first term:

❖ Change in path length: 

❖ Where TEC is total electron content, 

integrated along signal path
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𝑛2 = 1 −
𝜔𝑝
2

𝜔2
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+
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+
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𝑓4

+. . .
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𝑐2
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40.3
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TEC maps

❖ 1 TECU = 1016 el/m2

❖ receivers all over the Earth’s surface; 

20+ satellites to provide pierce-points

❖ Interpolate results onto 2D (or 3D) map
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GPS TEC and ionospheric science

❖ GPS TEC can be used to observe 

ionospheric disturbances

❖ “Plume” here, extending over North America, 

is footprint of plasmasphere “plume” during 

geomagnetic storm
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Ionosphere Missions

❖ ICON

❖ Using airglow to infer ion densities and winds

❖ Ampere

❖ Using magnetic fields to measure currents

❖ COSMIC and GPS

❖ Measuring the ionosphere using radio occultation / path 

delay

❖ Hidden Figures and Apollo 13: Re-entry comm problem
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The Equatorial Ionosphere

❖ The Fountain effect predicts two bands of 

enhanced electron density above and below the 

magnetic equator

❖ The truth? A bit more complicated….
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Model prediction Data from TIMED spacecraft
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ICON Science and Spacecraft

❖ Understand drivers of ionospheric variability

❖ Explain how energy / momentum from lower atmosphere reach the space environment 

(e.g. gravity waves!)

❖ Explain how drivers create extreme conditions observed during solar-driven geomagnetic storms
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ICON instrumentation

❖ Four main instruments:

❖ MIGHTI is a Michelson Interferometer to measure 

winds and temperatures

❖ FUV is an FUV imager; observes UV emissions of 

N2 and O to determine O/N2 ratio

❖ EUV images 83.4 nm emission from O; resonantly 

scattered by O+: gives ion density

❖ IVM is the ion velocity meter; uses a Retarded 

Potential Analyzer (RPA) to measure relative 

velocity of ions, therefore winds, as well as 

temperature and density
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How do you get temperature from optical emissions? 

❖ Line emissions: atomic oxygen has emission lines at 630.0 nm and 

557.7 nm (red and green lines)

❖ If the O atoms were completely stationary, emissions would 

always be at exactly these wavelengths

❖ O atoms are not stationary; have some velocity in random 

directions due to the gas temperature

❖ Atom moving at v’, relative to observer, will emit a photon that is 

Doppler shifted in wavelength by 

❖ Add up all the different v’s in the Maxwell-Boltzmann distribution, 

and you get a distribution of wavelengths that is Gaussian

❖ Line broadening

❖ Line gets broader when temperature is higher

❖ Need a really good spectrometer to resolve this line!
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ICON CONOPS
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ICON CONOPS made awesome
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A word from our sponsor
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Comparative Ionospheres: Jupiter 
and Mars
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Jupiter’s Ionosphere

❖ Atmosphere is mostly H2, so we would expect H2
+ (maybe H+), right?
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How do we measure the ionosphere?

❖ Transmit radio waves from spacecraft to Earth

❖ As we pass behind atmosphere / ionosphere, 

we get:

❖ Absorption at specific frequencies: atmosphere 

composition

❖ Refraction / ray-bending: ionosphere density

❖ Faraday rotation: magnetic field strength

❖ Get successive slices through atmosphere as 

orbit progresses

❖ Big matrix inversion to determine altitude profile
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Altitude Profiles

❖ Measured by radio occultation (Galileo spacecraft, mid-1990s)

❖ Ingress: passing behind planet

❖ Egress: emerging from behind planet

❖ Note very different ionospheres on the two sides of the planet!

❖ Lower layers potentially due to gravity waves, or other plasma processes
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Other Features in Jupiter’s Ionosphere?

❖ Jupiter has a nice strong magnetosphere similar in structure to 

Earth’s

❖ The magnetic field is important in the ionosphere, producing 

interesting plasma phenomena:

❖ Sporadic-E, Spread-F, the Equatorial Anomaly, Polar Cap 

absorption, Aurora, etc. 

❖ We expect that many of these occur at Jupiter as well

❖ Right: Equatorial Anomaly
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Mars’ Ionosphere: Layers

❖ Mars’ Ionosphere forms the same way as Earth’s: product of solar radiation (EUV) and molecules to ionize

❖ Good fit to a Chapman layer
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Ionosphere density and composition

❖ Electron density peaks at about 1011 electrons/m-3, at about 150 km altitude

❖ Ion composition is about 90% O2
+ and 10% CO2

+

❖ Some O+ at higher altitudes
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Mars Ionosphere Chemistry

❖ How do we get O2
+ despite not having much oxygen?
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Viking Measurements

❖ Viking 1 and 2 landers took measurements of the 

ion densities and composition during descent to 

planet’s surface

❖ Use Retarding Potential Analyzer (RPA) technique
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Radar Measurements
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Solar cycle variation
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Effect of Solar Flares

❖ from Mendillo et al 2006; Mars Global Surveyor radio 

occultation measurements

❖ Solar flare X-rays ionize the lowest part of the 

atmosphere (below 100 km or so)

❖ Harder x-rays reach deeper, close to Mars’ surface

❖ This event (right) probably mostly soft x-rays (a few keV)
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Summary

❖ Mars has an atmosphere similar to Earth’s in many ways, but also different:

❖ no stratosphere so likely no ozone layer

❖ primarily CO2 instead of N2

❖ primarily atomic oxygen (O) in thermosphere

❖ Scale height of 11 km compared to Earth’s 8 km

❖ Homosphere and heterosphere

❖ Mars has an ionosphere similar to Earth’s in many ways:

❖ Peak density comparable to Earth, but at 150 km altitude

❖ Mostly O2
+ due to reaction CO2

+ + O ⟶ CO + O2
+

❖ Variability with solar cycle and solar flares

❖ Same effect on radio wave propagation
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