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Scope of this lecture

Processes of magnetic field generation and destruction in turbulent plasma flows

Introduction to general concepts of dynamo theory

Outline

Intro: Magnetic fields in the Universe
MHD, induction equation
Some general remarks and definitions regarding dynamos
Small-scale dynamos
Large-scale dynamos (mean field theory)

Kinematic theory
Characterization of possible dynamos
Non-kinematic effects

Concluding remarks
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Magnetic fields in the Universe

Earth

Field strength ∼ 0.5G
Magnetic field present for ∼ 3.5 · 109 years, much longer than Ohmic decay time
(∼ 104 years)
Strong variability on shorter time scales (103 years)

Mercury, Ganymede, (Io), Jupiter, Saturn, Uranus, Neptune have large scale fields

Sun

Magnetic fields from smallest observable scales to size of sun
22 year cycle of large-scale field
Ohmic decay time ∼ 109 years (in absence of turbulence)

Other stars

Stars with outer convection zone: similar to sun
Stars with outer radiation zone: primordial fields, field generation in convective core

Galaxies

Field strength ∼ µG
Field structure coupled to observed matter distribution
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Geomagnetism

Mostly dipolar field structure (currently)

Credit: NOAA NGDC
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Geomagnetism

Short-term variation on scales of hundreds of years

Independent movement of the
poles

South and North pole are in
general not opposite to each other
(higher multipoles)

Movements up to 40 km/year
(∼ 1 mm/sec)

Credit: Arnaud Chulliat (Institut de Physique du Globe de Paris)
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Geomagnetism

Long-term variation on scales of thousands to millions of years (deduced from volcanic
rocks and sediments)

Mostly random changes of
polarity

A given polarity for
∼ 100, 000 years

Fast switches ∼ 1000 years

Strong variation of dipole
moment and failed reversals

Credit: US Geological Survey
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Solar Magnetism

Up to 4kG (sunspot umbra) field in
solar photosphere

Structured over the full range of
observable scales from 100 km to
size of Sun

Large-scale field shows symmetries
with respect to equator and periodic
reversals

Small-scale field appears to be
mostly independent from large-scale
field

Full disk magnetogram SDO/HMI
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Solar Magnetism

Large-scale field exhibits ∼ 22 year magnetic cycle

11 year cycle present in large-scale flow variations (meridional flow and differential
rotation)
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Solar Magnetism

Credit: NASA

Cycle interrupted by grand minima with duration of up to 100 years

Similar overall activity has been present for past ∼ 100, 000 years (tree ring and
ice core records of cosmogenic isotopes: C-14 and Be-10).
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Galactic magnetism

M51, Credit: MPI for Radioastronomy, Germany

Magnetic field derived from
polarization of radio emission

µG field strength

Magnetic field follows spiral
structure to some extent

Optically thin dynamo - Dynamo
region can be observed!
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Magnetic fields in the Universe

Objects from size of a planet to galaxy clusters have large-scale (∼ size of object)
magnetic fields

Physical properties of object differ substantially

1,000 km to 100,000 LJ
liquid iron to partially ionized plasma
spherical to disk-shaped
varying influence of rotation (but all of them are rotating)
Rm ∼ 103 . . . 1018

....

Is there a common origin of magnetic field in these objects?

Can we understand this on basis of MHD?
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MHD equations

The basic framework for understanding the dynamics of a magnetized fluid are the
MHD equations. In their most simple form they are applicable under the following
conditions:

Validity of continuum approximation (enough particles to define averages)

Strong collisional coupling: validity of single fluid approximations, isotropic
(scalar) gas pressure

Non-relativistic motions, low frequencies, high electrical conductivity

They combine a fluid description in terms of the Navier-Stokes equations with the
non-relativistic Maxwell equations as well as Ohm’s Law.
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Kinematic approach

Solving the 3D MHD equations is not always feasible

Semi-analytical approach preferred for understanding fundamental properties of
dynamos

Evaluate turbulent induction effects based on induction equation for a given
velocity field

Velocity field assumed to be given as ’background’ turbulence, Lorentz-force
feedback neglected (sufficiently weak magnetic field)
What correlations of a turbulent velocity field are required for dynamo (large-scale)
action?
Theory of onset of dynamo action, but not for non-linear saturation

More detailed discussion of induction equation
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Ohm’s law

Equation of motion for drift velocity vd of electrons

neme

(
∂vd
∂t

+
vd
τei

)
= neqe(E + vd × B)−∇pe

τei : collision time between electrons and ions
ne : electron density
qe : electron charge
me : electron mass
pe : electron pressure
With the electric current: j = ne qe vd this gives the generalized Ohm’s law:

∂j
∂t

+
j
τei

=
neq

2
e

me
E +

qe
me

j × B − qe
me

∇pe

Simplifications:

τei ωL ≪ 1, ωL = eB/me : Larmor frequency
neglect ∇pe
low frequencies (no plasma oscillations)
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Ohm’s law

Simplified Ohm’s law
j = σE

with the plasma conductivity

σ =
τeineq

2
e

me

The Ohm’s law we derived so far is only valid in the co-moving frame of the plasma.
Under the assumption of non-relativistic motions this transforms in the laboratory
frame to

j = σ (E + v × B)
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Induction equation

Using Ampere’s law ∇× B = µ0j yields for the electric field in the laboratory frame

E = −v × B +
1

µ0σ
∇× B

leading to the induction equation

∂B
∂t

= −∇× E = ∇× (v × B − η∇× B)

with the magnetic diffusivity

η =
1

µ0σ
.
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Advection, diffusion, magnetic Reynolds number

L: typical length scale U: typical velocity scale L/U: time unit

∂B
∂t

= ∇×
(

v × B − 1

Rm
∇× B

)
with the magnetic Reynolds number

Rm =
U L

η
.
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Advection, diffusion, magnetic Reynolds number

Rm ≪ 1: diffusion dominated regime

∂B
∂t

= η∆B .

Only decaying solutions with decay (diffusion) time scale

τd ∼ L2

η

Object η[m2/s] L[m] U[m/s] Rm τd
earth (outer core) 2 106 10−3 300 104 years
sun (plasma conductivity) 1 108 100 1010 109 years
sun (turbulent conductivity) 108 108 100 100 3 years
liquid sodium lab experiment 0.1 1 10 100 10 s
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Advection, diffusion, magnetic Reynolds number

Rm ≫ 1 advection dominated regime (ideal MHD)

∂B
∂t

= ∇× (v × B)

Equivalent expression

∂B
∂t

= −(v ·∇)B + (B ·∇)v − B ∇ · v

advection of magnetic field

amplification by shear (stretching of field lines)

amplification through compression
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Advection, diffusion, magnetic Reynolds number

Incompressible fluid (∇ · v = 0):

dB
dt

= (B ·∇)v

Velocity shear in the direction of B plays key role. Mathematically similar equation for
compressible fluid (Walen equation):

d

dt

B
ϱ

=

(
B
ϱ
·∇
)

v

Vertical flux transport in statified medium:

B ∼ ϱ no expansion in direction of B
B ∼ ϱ2/3 isotropic expansion

B ∼ ϱ1/2 2D expansion in plane containing B
B = const. only expansion in direction of B
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Alfven’s theorem

Let Φ be the magnetic flux through a surface F with the property that its boundary
∂F is moving with the fluid:

Φ =

∫
F

B · df −→ dΦ

dt
= 0

Flux is ’frozen’ into the fluid

Field lines ’move’ with plasma
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Dynamos: Motivation

For v = 0 magnetic field decays on timescale τd ∼ L2/η

Earth and other planets:

Evidence for magnetic field on earth for 3.5 · 109 years while τd ∼ 104 years
Permanent rock magnetism not possible since T > TCurie and field highly variable
−→ field must be maintained by active process

Sun and other stars:

Evidence for solar magnetic field for ∼ 300 000 years (10Be)
Most solar-like stars show magnetic activity (details depend on stellar type and
rotation)
Indirect evidence for stellar magnetic fields over life time of stars
But τd ∼ 109 years!
Primordial field could have survived in radiative interior of sun, but convection zone
has much shorter diffusion time scale ∼ 10 years (turbulent diffusivity)
Variability on time-scales ≪ τd .
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Mathematical definition of dynamo

S bounded volume with the surface ∂S , B maintained by currents contained within S ,
B ∼ r−3 asymptotically,

∂B
∂t

= ∇× (v × B − η∇× B) in S

∇× B = 0 outside S

[B] = 0 across ∂S

∇ · B = 0

v = 0 outside S , n · v = 0 on ∂S and

Ekin =

∫
S

1

2
ϱv2 dV ≤ Emax ∀ t

v is a dynamo if an initial condition B = B0 exists so that

Emag =

∫ ∞

−∞

1

2µ0
B2 dV ≥ Emin ∀ t
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Mathematical definition of dynamo

Is this dynamo different from those found in powerplants?

Both have conducting material and relative motions (rotor/stator in powerplant vs.
shear flows)

Difference mostly in one detail:

Dynamos in powerplants have wires (very inhomogeneous conductivity), i.e. the
electric currents are strictly controlled
Mathematically the system is formulated in terms of currents
A short circuit is a major desaster!
For astrophysical dynamos we consider homogeneous conductivity, i.e. current can
flow anywhere
Mathematically the system is formulated in terms of B (j is eliminated from
equations whenever possible).
A short circuit is the normal mode of operation!

Homogeneous vs. inhomogeneous dynamos
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Large-scale/small-scale dynamos

Decompose the magnetic field into large-scale part and small-scale part (energy
carrying scale of turbulence) B = B + B ′:

Emag =

∫
1

2µ0
B2

dV +

∫
1

2µ0
B ′2 dV .

Small-scale dynamo: B2 ≪ B ′2

Large-scale dynamo: B2 ≥ B ′2

Almost all turbulent (chaotic) velocity fields are small-scale dynamos for sufficiently
large Rm, large-scale dynamos require additional large scale symmetries (see second
half of this lecture)
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What means large/small scale?

Figure: Full disk magnetogram SDO/HMI, Hinode magnetogram
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Small-scale dynamo (SSD) action

Lagrangian particle paths:

dx1
dt

= v(x1, t)
dx2
dt

= v(x2, t)

Consider small separations:

δ = x1 − x2
dδ

dt
= (δ ·∇)v

Chaotic flows have exponentially growing solutions. Due to mathematical simularity
the equation:

d

dt

B
ϱ

=

(
B
ϱ
·∇
)

v

has exponentially growing solutions, too. We neglected here η, exponentially growing
solutions require Rm > O(100).
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The magnetic Prandtl number (Pm) challenge

28 / 65



The magnetic Prandtl number (Pm) challenge

Stellar convection zone have generally small
magnetic Prandtl numbers

Re ≫ Rm ≫ 0

Pm =
Rm

Re
≪ 1

Typical solar Pm values are 10−2 (base of
CZ) to 10−5 (Photosphere). Early SSD sim-
ulations used Pm > 1 and found that the
critical Rm was increasing as Pm was low-
ered. Do SSDs exist in the limit of small
Pm?

Figure: From Warnecke et al. (2023)
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Large-scale/small-scale dynamos

Amplification through field line stretching

Twist-fold required to repack field into original volume

Twist-fold requires 3D - there are no dynamos is 2D!

Magnetic diffusivity allows for change of topology
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Slow/fast dynamos

Influence of magnetic diffusivity on growth rate

Fast dynamo: growth rate independent of Rm (stretch-twist-fold mechanism)

Slow dynamo: growth rate limited by resistivity (stretch-reconnect-repack)

Fast dynamos relevant for most astrophysical objects since Rm ≫ 1

Dynamos including (resistive) reconnection steps can be fast provided the
reconnection is fast
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Differential rotation and meridional flow

Induction effects of axisymmetric flows on axisymmetric field:

B = BeΦ +∇× (AeΦ)
v = vrer + vθeθ +Ω r sin θeΦ

Differential rotation most dominant shear flow in stellar convection zones:

Meridional flow by-product of DR, observed as poleward surface flow in case of the sun
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Differential rotation and meridional flow

Spherical geometry:

∂B

∂t
+

1

r

(
∂

∂r
(rvrB) +

∂

∂θ
(vθB)

)
=

r sin Bp ·∇Ω+ η

(
∆− 1

(r sin θ)2

)
B

∂A

∂t
+

1

r sin θ
vp ·∇(r sin θA) = η

(
∆− 1

(r sin θ)2

)
A

Meridional flow: Independent advection of poloidal and toroidal field

Differential rotation: Source for toroidal field (if poloidal field not zero)

Diffusion: Sink for poloidal and toroidal field

No term capable of maintaining poloidal field against Ohmic decay!
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Differential rotation and meridional flow

Weak poloidal seed field can lead to significant field amplification

No source term for poloidal field

Decay of poloidal field on resistive time scale

Ultimate decay of toroidal field

Not a dynamo!

What is needed?

Source for poloidal field
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Cowling’s anti-dynamo theorem

A stationary axisymmetric magnetic field with currents limited to a finite volume in
space cannot be maintained by a velocity field with finite amplitude.

If dynamos exist, they require more complex, non-axisymmetric magnetic fields!

35 / 65



Large-scale dynamo theory

Some history:

1919 Sir Joeseph Larmor: Solar magnetic field maintained by motions of
conducting fluid?

1937 Cowling’s anti-dynamo theorem and many others

1955 Parker: decomposition of field in axisymmetric and non-axisymmetric parts,
average over induction effects of non-axisymmetric field

1964 Braginskii, Steenbeck, Krause: Mathematical frame work of mean field
theory developed

last 2 decades 3D dynamo simulations
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Reynolds rules

We need to define an averaging procedure to define the mean and the fluctuating field.
For any function f and g decomposed as f = f + f ′ and g = g + g ′ we require that
the Reynolds rules apply

f = f −→ f ′ = 0

f + g = f + g

f g = f g −→ f ′g = 0

∂f /∂xi = ∂f /∂xi

∂f /∂t = ∂f /∂t .

Examples:

Longitudinal average (mean = axisymmetric component)

Ensemble average (mean = average over several realizations of chaotic system)
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Meanfield induction equation

Average of induction equation:

∂B
∂t

= ∇×
(
v ′ × B ′ + v × B − η∇× B

)
New term resulting from small-scale effects:

E = v ′ × B ′

Fluctuating part of induction equation:(
∂

∂t
− η∆

)
B ′ −∇× (v × B ′) = ∇×

(
v ′ × B + v ′ × B ′ − v ′ × B ′

)
Kinematic approach: v ′ assumed to be given

Solve for B ′, compute v ′ × B ′ and solve for B
Term v ′ × B ′ − v ′ × B ′ leading to higher order correlations (closure problem)
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Mean field expansion of turbulent induction effects

Exact expressions for E exist only under strong simplifying assumptions (see homework
assignment).

In general E is a linear functional of B:

E i (x , t) =
∫ ∞

−∞
d3x ′

∫ t

−∞
dt ′Kij(x , t, x ′, t ′)B j(x ′, t ′) .

Can be simplified if a sufficient scale separation is present:

lc ≪ L

τc ≪ τL

Leading terms of expansion:

E i = aijB j + bijk
∂B j

∂xk

In stellar convection zones scale separation also only marginally justified (continuous
turbulence spectrum)!
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Symmetry constraints

Decomposing aij and ∂B j/∂xk into symmetric and antisymmetric components:

aij =
1

2
(aij + aji )︸ ︷︷ ︸

αij

+
1

2
(aij − aji )︸ ︷︷ ︸
−εijkγk

∂B j

∂xk
=

1

2

(
∂B j

∂xk
+

∂Bk

∂xj

)
+

1

2

(
∂B j

∂xk
− ∂Bk

∂xj

)
︸ ︷︷ ︸

− 1
2
εjkl (∇×B)l

Leads to:

E i = αijB j + εikjγkB j −
1

2
bijkεjkl︸ ︷︷ ︸

βil−εilmδm

(∇× B)l + . . .
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Symmetry constraints

Overall result:

E = αB + γ × B − β∇× B − δ × (∇× B) + . . .

With:

αij =
1

2
(aij + aji ) , γi = −1

2
εijkajk

βij =
1

4
(εiklbjkl + εjklbikl) , δi =

1

4
(bjji − bjij)
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Mean field induction equation

Induction equation for B:

∂B
∂t

= ∇×
[
αB + (v + γ)× B − (η + β)∇× B − δ × (∇× B)

]
Interpretation on first sight:

α: new effect

γ: acts like advection (turbulent advection effect)

β: acts like diffusion (turbulent diffusivity)

δ: special anisotropy of diffusion tensor
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Symmetry constraints

α, β, γ and δ depend on large-scale symmetries of the system defining the symmetry
properties of the turbulence (e.g. rotation and stratification). Additional to that the
expansion

E = αB + γ × B − β∇× B − δ ×∇× B + . . .

is a relation between polar and axial vectors:

E: polar vector, independent from handedness of coordinate system

B: axial vector, involves handedness of coordinate system in definition (curl
operator, cross product)

Handedness of coordinate system pure convention (contains no physics), consistency
requires:

α, δ: pseudo tensor

β, γ: true tensors
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Symmetry constraints

Turbulence with rotation and stratification

true tensors: δij , gi , gigj , ΩiΩj , Ωiεijk

pseudo tensors: εijk , Ωi , Ωigj , giεijk

Symmetry constraints allow only certain combinations:

αij = α0(g ·Ω)δij + α1 (giΩj + gjΩi ) , γi = γ0gi + γ1εijkgjΩk

βij = β0 δij + β1 gigj + β2ΩiΩj , δi = δ0Ωi

The scalars α0 . . . δ0 depend on quantities of the turbulence such as rms velocity and
correlation times scale.

isotropic turbulence: only β

+ stratification: β + γ

+ rotation: β + δ

+ stratification + rotation: α can exist
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Simplified expressions

Assuming |B ′| ≪ |B| in derivation + additional simplification for (quasi) isotropic,
non-mirror symmetric, (weakly) inhomogeneous turbulence (see homework
assignment):

vi ′vj ′ ∼ δij , αij = αδij , βij = ηtδij

Leads to:
∂B
∂t

= ∇×
[
αB + (v + γ)× B − (η + ηt)∇× B

]
with the scalar quantities

α = −1

3
τc v ′ · (∇× v ′), ηt =

1

3
τc v ′2

and vector

γ = −1

6
τc∇v ′2 = −1

2
∇ηt

Expressions are independent of η (in this approximation), indicating fast dynamo
action!
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Turbulent diffusivity - destruction of magnetic field

Turbulent diffusivity dominant dissipation process for large-scale field in case of large
Rm:

ηt =
1

3
τc v ′2 ∼ L vrms ∼ Rmη ≫ η

Formally ηt comes from advection term (transport term, non-dissipative)

Turbulent cascade transporting magnetic energy from the large scale L to the
micro scale lm (advection + reconnection)

ηj 2m ∼ ηt j
2 −→ Bm

lm
∼
√
Rm

B

L

Important: The large-scale determines the energy dissipation rate, lm adjusts to allow
for the dissipation on the microscale.
Present for isotropic homogeneous turbulence
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Turbulent diamagnetism, turbulent pumping

Expulsion of flux from regions with larger turbulence intensity ’diamagnetism’

γ = −1

2
∇ηt

Turbulent pumping (stratified convection):

γ = −1

6
τc∇v ′2

Upflows expand, downflows converge

Stronger velocity and smaller filling factor of downflows

Mean induction effect of up- and downflow regions does not cancel

Downward transport found in numerical simulations

Requires inhomogeneity (stratification)
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Kinematic α-effect

α = −1

3
τc v ′ · (∇× v ′) Hk = v ′ · (∇× v ′) kinetic helicity

Requires rotation + additional preferred direction (stratification)
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Fast or slow dynamo?

Turbulent induction effects require reconnection to operate; however, the expressions

αij =
1

2
τc

(
εiklvk ′

∂vl ′

∂xj
+ εjklvk ′

∂vl ′

∂xi

)
γi = −1

2
τc

∂

∂xk
v ′i v

′
k

βij =
1

2
τc

(
v ′2δij − vi ′vj ′

)
are independent of η (in this approximation), indicating fast dynamo action (no formal
proof since we made strong assumptions!)
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Meanfield energy equation

d

dt

∫
B2

2µ0
dV = −µ0

∫
ηj 2 dV −

∫
v · (j × B) dV +

∫
j · E dV

Energy conversion by α-effect ∼ αj · B
α-effect only pumps energy into meanfield if meanfield is helical (current helicity
must have same sign as α)!

Dynamo action does not necessarily require that j · E is an energy source. It can
be sufficient if E changes field topology to circumvent Cowling, if other energy
sources like differential rotation are present (i.e. Ω× j effect).
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α2-dynamo

Induction of field parallel to current (producing helical field!)

∂B
∂t

= ∇×
(
αB
)
= αµ0j

Dynamo cycle:
Bt

α−→ Bp
α−→ Bt

Poloidal and toroidal field of similar strength

In general stationary solutions
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αΩ-, α2Ω-dynamo

Dynamo cycle:

Bt
α−→ Bp

Ω, α−→ Bt

Toroidal field much stronger that poloidal field

In general traveling (along lines of constant Ω) and periodic solutions
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αΩ-dynamo

∂B

∂t
= r sin Bp ·∇Ω+ ηt

(
∆− 1

(r sin θ)2

)
B

∂A

∂t
= αB + ηt

(
∆− 1

(r sin θ)2

)
A

Cyclic behavior:

P ∝ (α|∇Ω|)−1/2

Propagation of magnetic field along
contourlines of Ω “dynamo-wave”

Direction of propagation
“Parker-Yoshimura-Rule”:

s = α∇Ω× eϕ
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Ω× J dynamo

∂B
∂t

= ∇× [δ × (∇× B)] ∼ ∇× (Ω× j ) ∼ ∂j
∂z

similar to α-effect, but additional z-derivative of current

couples poloidal and toroidal field

δ2 dynamo is not possible:

j · E = j · (δ × j ) = 0

δ-effect is controversial (not all approximations give a non-zero effect)

in most situations α dominates
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Dynamos and magnetic helicity

Magnetic helicity (integral measure of field topology):

Hm =

∫
A · B dV

has following conservation law (no helicity fluxes across boundaries):

d

dt

∫
A · B dV = −2µ0 η

∫
j · B dV

Decomposition into contributions from small and large-scale magnetic field:

d

dt

∫
A · B dV = +2

∫
E · B dV − 2µ0 η

∫
j · B dV

d

dt

∫
A′ · B ′ dV = −2

∫
E · B dV − 2µ0 η

∫
j ′ · B ′ dV
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Dynamos and magnetic helicity

Dynamos have helical fields:

α-effect induces magnetic helicity of same sign on large-scale

α-effect induces magnetic helicity of opposite sign on small scale

Asymptotic staturation

j ′ · B ′ = −j · B −→ |B|
|B ′|

∼
√

L

lc

j ′ · B ′ = −αB2

µ0η
+

ηt
η

j · B
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Non-kinematic effects

Proper way to treat them: 3D simulations

Still very challenging, can’t be done for the correct parameter regime

Has been successful for geodynamo, but not for solar dynamo

Semi-analytical treatment of Lorentz-force feedback in mean field models:

Macroscopic feedback: Change of the mean flow (differential rotation, meridional
flow) through the mean Lorentz-force

f = j × B + j ′ × B ′

Mean field model including mean field representation of full MHD equations

Microscopic feedback: Change of turbulent induction effects (e.g. α-quenching)
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Microscopic feedback

Feedback of Lorentz force on small-scale motions:

Intensity of turbulent motions significantly reduced if 1
2µ0

B2 > 1
2ϱv

2
rms . Typical

expression used

α =
αk

1 + B2

B2
eq

with the equipartition field strength Beq =
√
µ0ϱvrms

Similar quenching also expected for turbulent diffusivity

Additional quenching of α due to topological constraints possible (helicity
conservation)
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Microscopic feedback

Symmetry of momentum and induction equation v ′ ↔ B ′/
√
µ0ϱ:

dv ′

dt
=

1

µ0ϱ
(B ·∇)B ′ + . . .

dB ′

dt
= (B ·∇)v ′ + . . .

E = v ′ × B ′

Strongly motivates magnetic term for α-effect (Pouquet et al. 1976):

α =
1

3
τc

(
1

ϱ
j ′ · B ′ − ω′ · v ′

)

Kinetic α: B + v ′ −→ B ′ −→ E
Magnetic α: B + B ′ −→ v ′ −→ E
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Microscopic feedback

α = αk +
τc
3ϱ

j ′ · B ′

With the asymptotic expression (steady state)

j ′ · B ′ = −αB2

µ0η
+

ηt
η

j · B

we get

α =
αk +

η2t
η

µ0j ·B
B2
eq

1 + ηt
η

B2

B2
eq
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Microscopic feedback

Catastrophic α-quenching (Rm ≫ 1!) in case of steady state and homogeneous B:

α =
αk

1 + Rm
B2

B2
eq

If j · B ̸= 0 (dynamo generated field) and ηt unquenched:

α ≈ ηt µ0
j · B
B2

∼ ηt
L

∼ ηt
lc

lc
L

∼ αk
lc
L

In general α-quenching dynamic process: linked to time evolution of helicity

Boundary conditions matter: Loss of small-scale current helicity can alleviate
catastrophic quenching

Catastrophic α-quenching turns large-scale dynamo into slow dynamo
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3D simulations

Why not just solving the full system to account for all non-linear effects?

Most systems have Re ≫ Rm ≫ 1, requiring high resolution

Large-scale dynamos evolve on time scales τc ≪ t ≪ τη, requiring long runs
compared to convective turn over

3D simulations successful for geodynamo

Rm ∼ 300: all relevant magnetic scales resolvable
Incompressible system

Solar dynamo: Ingredients can be simulated

Compressible system: density changes by 106 through convection zone
Boundary layer effects: Tachocline, difficult to simulate (strongly subadiabatic
stratification, large time scales)
How much resolution required? (CZ about ∼ 109 Mm3, 1 Mm resolution ∼ 10003

numerical problem)
Small-scale dynamos can be simulated (for Pm ∼ 1)
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Where did the “first” magnetic field come from?

Meanfield induction equation linear in B: possible solution.

∂B
∂t

= ∇×
[
αB + (v + γ)× B − (η + ηt)∇× B

]
B = 0 is always a valid solution!
Generalized Ohm’s law with electron pressure term:

E = −v × B +
1

σ
j − 1

ϱe
∇pe .

leads to induction equation with inhomogeneous source term ”Biermann Battery”:

∂B
∂t

= ∇× (v × B − η∇× B) +
1

ϱ2e
∇ϱe ×∇pe .
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Where did the “first” magnetic field come from?

Early universe:

Ionization fronts from point sources (quasars) driven through an inhomogeneous
medium: 1/ϱ2e∇ϱe ×∇pe can lead to about 10−23G

Collapse of intergalactic medium to form galaxies leads to 10−20 G

Galactic dynamo (growth rate ∼ 3Gy−1) leads to 10−6 G after 10 Gy (today)

Source term is working all the time

∇ϱe ×∇pe/ϱ
2 at edge of solar granules induces field of about 10−6 G

(Khomenko et al. 2017)
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Next Lecture: Applications to Sun, Stars and planets

Solar Dynamos

Large and small-scale flows in the solar convection zone
Overview of meanfield andf 3D dynamo models
Limitations of approaches
Small-scale dynamos

Dynamos in solar-like stars

Effect of rotation and convection zone depth on dynamo properties
Evolution of stellar rotation and dynamos

Geodynamo

What is similar, what is different compared to stellar dynamos?
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