MODELING SOLAR ACTIVE REGIONS WITH FLUX ROPES

Antonia Savcheva^{1,2}

NASA Summer School Ausgust 4, 2022, Section 1

1 Planetary Science Institute 2 Harvard-Smithsinian Center for Astrophysics <u>asavcheva@psi.edu</u>, 857-262-6595

Outline

- Solar Active regions and sigmoids
- General questions to be answered
- Sigmoid models for formation and evolution
- Eruption models
- Magnetic modeling of sigmoidal regions
- Field topology analysis
- The instability-reconnection feedback scenario
- Some questions of common interest

Solar active regions (AR)

- Magnetic in nature
- Flux tubes from the interior rise via buoyancy
- AR in different parts of the solar atmosphere

Sigmoids – an overview

- Transient or long-lasting S (south) or inverse-S (north) shape active regions
- Twisted and sheared magnetic field structures – great for storing magnetic energy
- Canfield et al. (1999, 2007) 68% of eruptions originate in sigmoidal regions
- Often associated with H_a filaments, in dips of twisted flux ropes
- Best modeled by a weekly twisted flux rope in the core, held down by a potential arcade – Titov & Demoulin (1999)

Some questions

- How do sigmoids form? How is the flux rope build up?
- What is their magnetic field structure?
- What is the free energy contect and how is it stored?
- What is the topology of the field?
- What instabilities play a role in the eruptions?
- □ Is reconnection important?
- Locating probable sites for reconnection and instabilities?

Models for formation and evolution

1. Flux emergence through the photosphere of already twisted flux rope (Fan & Gibson '04, '06, '07, Archontis et al. '09)

- If plasma is included (β~1) flux rope is destroyed by the plasma it drags along
- MHD simulations cannot stabilize the flux rope before eruption

 it erupts almost instantaneously
- Simulations of transient sigmoids in emerging flux regions

2. Shearing footpoint motions inject twist and shear in an initially potential field (Aulanier et al. '10, Amari et al. '00)

- Requires large scale rotation or relative motion of polarities
- Not always observed

Models for formation and evolution

3. Flux cancellation in decaying active region

 Van Ballegooijen & Martens (1989) picture for building flux ropes and storage of energy

- Shear flow + converging motions short submerging loops + long helical field lines (FL)
- Build of free energy (definition) Potential field to field with free energy

An example of flux cancelation for building flux ropes

Sheared arcade to full FR

- Little flux sheared arcade earlier in the evolution
- More flux 2J to S FLs 1 day to few days before eruption

Eruption models

- The standard model
- Need loss of equilibrium
- Ideal instabilities kink, torus
- Reconnection

Kink and torus instability

Equations

Magnetic field modeling - Motivation

- Need model of the magnetic field when region is on disk
- Static or quasi-static from observed B field, extrapolates the field to the corona
- Can match to observed loops and associate loops with parts of the field structure
- Field topology, current build-up, energy storage
- Can estimate flux and energy budgets
- Study flux build-up prior to eruptions
- Conditions for instability
- Study region formation, evolution, eruption
- Comparison with dynamical MHD models

Magnetic Models

• Euler Euqation or equation for motion in the corona

$$\rho \frac{d\mathbf{V}}{dt} = \rho (\frac{\partial \mathbf{V}}{\partial t} + \mathbf{V} \cdot \nabla \mathbf{V}) = -\nabla p + \rho \mathbf{g} + \mathbf{j} \times \mathbf{B} + \mathbf{F}_{\text{visc}} + \mathbf{F}_{\text{friction}} = 0$$

Mening that the magnetic pressure and tension in the configuration
must balance

$$-\nabla(\frac{B^2}{2\mu}) + \frac{1}{\mu}(\mathbf{B}\cdot\nabla)\mathbf{B} = 0$$

- Corona in equilibrium force-free, J | B $\nabla \times \mathbf{B} \approx \alpha \mathbf{B}$
- Potential field when torsion parameter **a**=**0**
- Linear force free field (LFF) when **a=const** everywhere
- NLFFF a = const along field lines, but different for different FLs
- NLFFF models most accurately describe the sheared and twisted core AND the potential arcade
- Schriver et al. (2006, 2008) review of NLFFF models

The flux rope insertion method

u van Ballegooijen (2000, 2004)

- Global potential field extrapolation from SOLIS/HMI Carington magnetogram for global B.C.
- Potential field extrapolation from a HiRes LoS magnetogram (MDI or HMI)
 Clear up a cylindrical cavity with no B where FR will be
- Insert flux rope as a combination of axial and poloidal flux use filament path as guidance – from dat
- Relax by magneto-friction with hyperdiffusion
- Fit model to observed coronal loops

Magnetofriction

EquationsWe iterate the induction equation

 $\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E},$

where the electric field is expressed by the the resistive MHD condition:

 $\mathbf{E} = -\mathbf{v} \times \mathbf{B} + \eta \mathbf{j}$

With frictioanl coefficients and current terms

 $\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \left(v \times \mathbf{B} - \eta_i \nabla \times \mathbf{B} + \frac{\mathbf{B}}{B^2} \nabla \cdot (\eta_4 B^2 \nabla \alpha) \right)$ • Casted in vector potentioanl to preserve the divergence of B $\frac{\partial \mathbf{A}}{\partial t} = v \times \mathbf{B} - \eta_i \nabla \times \mathbf{B} + \frac{\mathbf{B}}{B^2} \nabla \cdot (\eta_4 B^2 \nabla \alpha) + \nabla (\eta_d \nabla \cdot \mathbf{A})$ XRT Sigmoid from Feb 2007 **Evolution over 7 days** 2 eruptions – Feb 07, 12 Types of field lines: J - shaped S-shaped Sheared arcade Potential arcade Post-flare-like loops

Magnetic field Topologies

Connectivity domains – topology under smooth deformations

- Gradient of the mapping from one set of neighboring footpoints to the other – Priest & Demoulin '95, Demoulin et al. '96, '97
- □ Circle generally maps onto ellipse squashing factor (Q) Titov '99, '07
- Separatrices discontinuous mapping, infinite Q
- Quasi-Separatrix Layers (QSLs) where FL linkage drastically changes but is still continuous, large but finite Q,
 3D generalization of topology add contours by hand

Squashing factor

The gradient of the field line mapping is given by the Jacobian magtrix (Demoulin ''95, 99)

$$M = \begin{pmatrix} \frac{\partial X}{\partial x} & \frac{\partial X}{\partial y} \\ \frac{\partial Y}{\partial x} & \frac{\partial Y}{\partial y} \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

The covariant form of Q, applicable to any system of coordinates and shapes of the boundaries, was derived by <u>Titov</u> (2007). The squashing factor, Q, quantifies the strength of a QSL and is given by $Q = N^2/|\Delta|$, where $N^2 \equiv a^2 + b^2 + c^2 + d^2$ and the Jacobian $\Delta \equiv ad - bc$. Assuming flux conservation, the Jacobian is also the ratio

QSLs and current sheets

- Separatrices and QSLs + footpoint motions → locations for build-up of sharp/dense current sheets, probable sites for reconnection
- Slip-running reconnection FLs slip through plasma at >V_A
- Theoretically Q is inversely proportional to the thickness of current sheet
- □ Sharp current sheets → explosive release of energy in reconnection
- Not so sharp \rightarrow store free energy

General properties of QSLs

Large complexity in B flux

Large complexity in low-res QSL map

Prominent QSLs are aligned with B-field

Correspond to large current concentrations

JQ plots – product of J and Q plots – to pick out prominent QSLs

Idealized MHD simulations

- Zero-β 3D MHD code (Aulanier et al. 2005, 2010)
- Initially a potential field from two smooth asymmetric polarities
- Shearing motions at the PIL
- Diffusion of B flux cancellation at PIL
- Build flux rope
- The flux rope (FR) develops BPSS but does not erupt
- Later develops an inverted tear drop shape
- The elevated flux rope enters into the torus instability domain and lifts off

The 3D magnetic field

- All 4 types of field lines exist in both models
 - S-shaped (green) from the inside of the flux rope
 - J-shaped (yellow) connect under the FR
 - Short red field lines under the HFT
 - Overlaying arcade (blue)
- The FR in the MHD simulation is much thinner w.r.t. length

Horizontal QSL maps

- Higher complexity in the QSL maps of the NLFFF model – intrinsic to the large fragmentation of the real B distribution
- In MHD model single diffuse
 QSL due to extended diffuse
 polarities
- S-shaped QSL in MHD model due to incomplete FR
- Recovers TD topology for a HFT configuration FR
- Label columns
- Add arrows for guidence

Current distributions

- QSLs coincide with ridges in the current density
- Both QSLs and current concentrations outline the FR cavity
- Current is more diffuse in NLFFF model due to relaxation process
- MHD simulation has footpoint motions – hence sharp currents at QSLs

■ Same

The Hyperbolic Flux tube

- Add cartoon, eq. for HFT
 Outline HFT
- QSLs and current on the edge of the FR
- Asymmetric expansion and current distributions in both cases
- HFT configuration in both models
- Highest value of Q
 - 10¹³ NLFFF model
 - 10⁸ MHD simulation
- Explosive reconnection can take place for Q>10⁶ (Demoulin et al. 96)
- HFT appears at the location of the eruption in both cases

The torus instability

Increase thickness lines

- Not enough twist for kink instability ~ 1-1.5 turns, need at least 3.5π
- Tether-cutting reconnection at the HFT elevates the FR more and it enters the torus instability regime in the MHD simulation (Aulanier et al. 2010)
- Torus instability when the potential arcade falls off with heights as n=dlnB/dlnz=1.5, depends on aspect ratio
- Evidence for possible torus instability in the modeled 3D magnetic field
- n=1.5 at the edge of the FR, continued expansion will lead to torus instability

Discussion

- Need to study the formation mechanism of sigmoids flux emeregence/cancellation, footpoint motions
- How to gain a handle on the eruption mechanism?
- What instabilities contribute and what are the conditions?
- What are the relevant stability limits? What are the effects of the magnetic field configuration? (i.e., the ratio of toroidal to poloidal field in the flux rope)
- What properties define marginally stable configurations? What can be observed?
- Resistive instabilities have not been fully explored
- How do kink and torus play together to produce an eruption

More questions

- Do we need reconnection and how does play with the instability?
- What leads to the onset of reconnection on small and large scales
- What are the global properties of the field and where might reconnection occur?
- How does reconnection occur in partially ionized plasmas? – relevant to chromospheric reconnection