
Turbulence

Anna Tenerani

Heliophysics Summer School, Boulder, 2024



References

G. K. Batchelor, An introduction to fluid dynamics, Cambridge University Press, Cambridge, 

2002

T. M. Boyd and J. J. Sanderson, The physics of plasmas, Cambridge University Press, 

Cambridge, 2003

D. Biskamp, Magnetohydrodynamic turbulence, Cambridge University Press, Cambridge, 

2003

U. Frisch, Turbulence. The legacy of A.N. Kolmogorov, Cambridge University Press, 

Cambridge, 1995

R. Bruno & V. Carbone, The solar wind as a turbulence laboratory, Living Rev. Sol. Phys. 10, 

2 (2013). https://doi.org/10.12942/lrsp-2013-2

https://doi.org/10.12942/lrsp-2013-2


• Introduction
• Why turbulence?

• Qualitative features of turbulent flows

• Relevance of turbulence in astrophysical environments

• Open problems in the solar wind

• Turbulence in fluids

• Concept of nonlinear cascade
• A simple model: Burgers equation

• Navier-Stokes equation and Kolmogorv phenomenology

• MHD turbulence

• Alfvén waves
• MHD turbulence phenomenology

• Solar wind turbulence in data

• New challenges from Parker Solar Probe

• Summary

Outline



Introduction



Why turbulence?

➢ It is the process by which a fluid (or gas) attempts to self-organize its energy.

➢ In the space context:

➢ It can heat the background plasma.

➢ It can scatter cosmic rays

➢ It is a major factor for star formation

Turbulence is a fundamental and ubiquitous phenomenon on Earth.

Turbulence is a major factor 

in the car and aviation 

industry, by affecting drag 

Enhances mixing: 

affects diffusion e.g., of 

contaminants and 

transport in general

Affects weather 

patterns, including 

hurricanes



Some canonical features of turbulent flows

https://www.youtube.com/watch?v=_UoTTq651dE&t=21s



o Not steady and unpredictable

o Multiscale 

o Enhanced mixing 

o Intermittent behavior

Simulation by C. Gonzalez showing 

the development of turbulence in a 

magnetized plasma.

Some canonical features of turbulent flows



Open problems in the solar wind
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Laminar wind from Parker’s theory

• First theory that predicts a solar wind, 1958
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Exploring the heliosphere out 

of the ecliptic: the Ulysses 

mission

Typical configuration (at solar 

minimum) of magnetic field 

structure and slow/fast wind

The solar wind measured by Ulysses



The solar wind is hotter than predicted

Fitted radial trend of temperature

Predicted by adiabatic spherical expansion

Evidence for ongoing proton heating!

[Hellinger et al 2011]

𝑇 ∼ 𝑅−0.74

𝑼 ⋅
𝑑𝑇

𝑑𝑹
= −𝑇

2

3
𝛁 ⋅ 𝑼 ⇒ 𝑇 ∼ 𝑅−4/3



Modeling “Wave-Driven” Winds

Steady state equations describing the conservation of mass and momentum fluxes of the average 

solar wind, and a simplified equation for the temperature:

Perturbations in density, velocity and magnetic field contribute to the average solar wind via wave 

pressure and Reynolds stresses. They can also heat the plasma via dissipation (or other kinetic 

processes.)

𝑈 ⋅ ∇𝑇 = −𝑈
4

3

𝑇

𝑅
+𝑚𝑝𝜀



Observed solar wind fluctuations 

(Belcher & Davis JGR 1972)
[Belcher & Davis1971]
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• What heats and accelerates the solar wind?

• Evidence points to the fact that fluctuations/turbulence play a crucial role

• If it’s “waves”, what’s the problem then?

• We need to understand how the energy stored in the field can be conveyed 

to the particles 

• To answer to this question, we need to go beyond laminar flow models and

understand nonlinear evolution of fluctuations

Open questions



Turbulence in Fluids



From laminar to turbulent flows

Reynolds number



From laminar to turbulent flows

https://www.youtube.com/watch?v=vhDaCZZ0Sc4



What is a turbulent flow?

Experiment 1 Experiment 2

time time

• The two experiments in the same conditions report different signals. 

• The velocity appears chaotic. The system is highly sensitive to small perturbations in the initial 

conditions (Lorenz 1963)

• However, the signals vary cyclically and display the same statistical properties (e.g, the mean and rms 

of the signal distribution). The signal also contains multiple scales.



Energy cascade (configuration space)

Schematic diagram of an eddy which undergoes an instability that fragments it 

into smaller structures



Energy cascade (Fourier space)

𝑘𝐿 ∼
1

𝐿
𝑘𝑑 ∼

1

𝜂

𝑘𝑑𝑘𝐿

𝜂



• Simplest model to analyze the combined effect of nonlinearity and diffusion

• Assume a periodic function: 𝑢 𝑥, 𝑡 = σ𝑘 𝐴𝑘 𝑡 𝑒𝑖𝑘𝑥

• Substitute into eq. (1)

Nonlinearity dissipation 

Nonlinearity 
dissipation 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 𝜈

𝜕2𝑢

𝜕𝑥2
(1)

A simple example: Burgers equation

ሶ𝐴𝑘 +෍

𝑚

𝑖 𝑚𝐴𝑘−𝑚𝐴𝑚 = −𝜈𝑘2𝐴𝑘 (2)



Nonlinearity dissipation 

• Dissipation acts on single components leading inexorably to their decrease  

• Nonlinearity couples a given mode with higher wave-number modes (i.e. smaller scales)

• Even if initially all of the energy was contained in a single mode (say, k=1), the nonlinear term acts 

as a source (like a forcing term) for all of the other accessible modes to the system

• This leads to transfer of energy at smaller scales, aka, energy cascade

• Does energy cascade proceeds ad-infinitum? No!

A simple example: Burgers equation

ሶ𝐴𝑘 +෍

𝑚

𝑖 𝑚𝐴𝑘−𝑚𝐴𝑚 = −𝜈𝑘2𝐴𝑘



A simple example: Burgers equation

(𝑅𝑒 = 10 × 2𝜋)

(𝑅𝑒 = 1000 × 2𝜋)



Navier-Stokes equation for 

incompressible fluids

𝜕𝒖

𝜕𝑡
+ 𝒖 ⋅ 𝛁 𝒖 = −𝛁𝑝 +

1

𝑅𝑒
∇2𝒖

[Banerjee, Supratik. (2014)]

𝛁 ⋅ 𝒖 = 0



Energy conservation

Kinetic energy/mass

• From incompressible Navier-Stokes, energy conservation law:

𝐾 ≡
1

2
න
𝑉

𝒖 ⋅ 𝒖𝑑𝑉 =
1

2
න
𝑉

𝑢2𝑑𝑉

𝜕𝐾

𝜕𝑡
+ න

𝑉

𝒖 ⋅ 𝛁𝑝 + 𝒖 ⋅ [ 𝒖 ⋅ 𝛁 ]𝒖 𝑑𝑉 = −න
𝑉

𝜈 𝒖 ⋅ (∇2𝒖)𝑑𝑉

(1) = ∫ [𝛁 ⋅ 𝒖 𝑝 − 𝑝 𝛁 ⋅ 𝒖 ]𝑑𝑉 = 0 (assuming periodicity and incompressibility)

(1) (2)

(2) = ∫ 𝐮 ⋅
1

2
𝛁 ⋅ 𝑢2 − 𝒖 × 𝛁 × 𝒖 𝑑𝑉 = ∫

1

2
𝛁 ⋅ 𝐮𝑢2 − 𝑢2 𝛁 ⋅ 𝒖 − 𝟎 𝑑𝑉 = 0

(3)

(3) = ∫𝑉 𝜈 𝒖 ⋅ ∇2𝒖 𝑑𝑉 = ∫𝑉 𝜈[𝛁 ⋅ 𝒖 ⋅ 𝛁𝒖 − 𝛁𝒖 2] = ∫𝑉 𝜈 𝛁𝒖
2𝑑𝑉



Energy conservation

• From incompressible Navier-Stokes, energy conservation law:

• In the presence of energy ‘pump’ (source) f

• Nonlinear terms and pressure transfer energy in a conservative way (inertial range)

• In steady-state energy is dissipated at the same rate at which it is let into the system

• The dissipation rate ε does not depend on viscosity!

𝜕𝐾

𝜕𝑡
= −න

𝑉

𝜈(𝛁𝒖)2𝑑𝑉

𝜕𝐾

𝜕𝑡
= න

𝑉

𝒇 ⋅ 𝒖𝑑𝑉 − න
𝑉

𝜈(𝛁𝒖)2𝑑𝑉

𝜀



• How small are the dimensions at which viscous effects prevail?

• What happens between the scales where energy is injected into the flow and those where 

it is dissipated?

• Theory of Kolmogorov provides answers to those questions. It starts from hypothesis 

motivated by empirical observations: 

(1) At very large but finite Reynolds number, the turbulent flow is statistically homogeneous 

and isotropic

(2) At very large but finite Reynolds number, the turbulent flow is self-similar at scales smaller 

than the injection scale and larger than dissipative.

(3) At very large but finite Reynolds number, the turbulent flow has a finite, nonvanishing 

mean dissipation rate per unit mass 

Kolmogorov phenomenology (1941)



The main elements of phenomenology are:

o 𝜆, the scale under consideration (between injection scale L and dissipative scale 𝜂)

o 𝑢𝜆, the typical value of the velocity associated to scales ∼ 𝜆: 𝑢𝜆 ∼ < 𝛿𝑢2 𝜆 >

o 𝜏𝑁𝐿 the “eddy turnover time” associated with scale 𝜆

Kolmogorov phenomenology (1941)

o Eddies of nearly the same size interact through their gradients and distort one 

another. 𝜏𝑁𝐿 represents the timescale of this interaction through which energy 

flows across scales.

o The rate of energy transfer from scales ∼ 𝜆 to smaller ones is: Π𝜆 ∼
𝑢𝜆
2

𝜏𝑁𝐿
∼

𝑢𝜆
3

𝜆



• Inertial range there is neither direct energy input nor direct dissipation

• At the top and bottom of the inertial range we find: 

o 𝜀 ∼ 𝑈3/𝐿 (energy injection rate at macroscopic scale)

o Kolmogorov dissipation scale 𝜂, where dissipation must balance inertia:

Kolmogorov phenomenology (1941)

Π𝜆 ∼
𝑢𝜆
2

𝜏𝑁𝐿
∼
𝑢𝜆
3

𝜆
∼ 𝜀

• Thus:

𝑢𝜆 ∼ 𝜀
1
3𝜆1/3

𝜀 ∼
𝜈

𝜂2
𝑢𝜂
2 ⇒ 𝜂 ∼ 𝜀

1
4𝜈

3
4 ∼ 𝐿𝑅𝑒

−
3
4



Energy spectrum in fluids

𝐸 = ∫ 𝑢2 𝑘 𝑑𝑘 = ∫ 𝐸 𝑘 𝑑𝑘,

𝐸 𝑘 = 𝐶𝑘
1

𝑘
𝜀
2
3𝑘−

2
3 = 𝐶𝑘𝜀

2
3𝑘−5/3

𝐶𝑘 = 1.6



Typical magnetic field energy spectrum in the solar wind at 1AU 
(Kiyani et al. Phil. Trans. R. Soc. A. 373 2015)

Solar wind turbulent spectrum



Turbulence in the Earth’s magnetosphere

[Huang et al ApjL 2017].

Magnetosheath

[Bandyopadhyay et al MNRAS 2020].

Magnetotail



Interstellar turbulence

[Armstrong et al 1995] [Lee & Lee, Nat astronom2019]



MHD turbulence



MHD contains 2 timescales:

Fluid timescale of overturning eddies

Wave propagation timescale

MHD has also the magnetic field that is coupled to the velocity field

In the presence of an average background magnetic field, the system is 

not isotropic 

From hydro to MHD



Alfvén waves

• Transverse to both B0 and k

(transverse/incompressible)

• Incompressible means that there is not perturbed density and pressure 

• Relation between B and u fluctuations: 

• Magnetic tension only provides the 

restoring force

• Oscillations are driven by magnetic 

field tension and inertia

𝛿𝑩

𝐵0
= ±

𝛿𝒖

𝑉𝑎

𝒌 ⋅ 𝛿𝒖 = 0𝑩0 ⋅ 𝛿𝒖 = 0



Incompressible MHD

Introduce Elsasser variables 

P



Incompressible MHD - reloaded

propagation nonlinearity

Sum and subtract u and B equations and use new variables:

dissipation

• 𝒛± represent “counterpropagating” Alfvénic fluctuations

• Two equations displaying a similar symmetry as Navier-Stokes are recovered, however with 

important differences: the nonlinearity couples different fields, and there is a linear 

propagation term



Interaction of MHD ‘eddies’

o Nonlinear interactions occur between ‘counter-propagating’ Alfvénic fluctuations

o 𝑘∥𝑉𝑎 ≫ 𝑘⊥𝑧
± turbulence in weak

o 𝑘∥𝑉𝑎 ≪ 𝑘⊥𝑧
± turbulence is strong



Iroshnikov-Kraichnan (1965)

o Iroshnikov (1964) and Kraichnan (1965) argue that in MHD, wave propagation (𝜏𝐴) is more 

important that turbulent “eddy” interaction (𝜏𝑒). 

o The hypothesis is that interactions are weak,  𝜏𝐴 =
𝜆∥

𝑉𝑎
≪ 𝜏𝑒 ≡

𝜆

𝑢𝜆
. The other hypothesis is 

that turbulence is isotropic, 𝜆∥ ∼ 𝜆⊥.



Iroshnikov-Kraichnan (1965)

o Iroshnikov (1964) and Kraichnan (1965) argue that in MHD, wave propagation (𝜏𝐴) is more 

important that turbulent “eddy” interaction (𝜏𝑒). 

o The hypothesis is that interactions are weak,  𝜏𝐴 =
𝜆∥

𝑉𝑎
≪ 𝜏𝑒 ≡

𝜆

𝑢𝜆
. The other hypothesis is 

that turbulence is isotropic, 𝜆∥ ∼ 𝜆⊥.

o The timescale for the two wave packets to cross each other is  of the order of the Alfvén

time Δ𝑡 ∼
𝜆∥

𝑉𝑎
∼

𝜆

𝑉𝑎



Iroshnikov-Kraichnan (1965)

o Iroshnikov (1964) and Kraichnan (1965) argue that in MHD, wave propagation (𝜏𝐴) is more 

important that turbulent “eddy” interaction (𝜏𝑒). 

o The hypothesis is that interactions are weak,  𝜏𝐴 =
𝜆∥

𝑉𝑎
≪ 𝜏𝑒 ≡

𝜆

𝑢𝜆
. The other hypothesis is 

that turbulence is isotropic, 𝜆∥ ∼ 𝜆⊥.

o The timescale for the two wave packets to cross each other is  of the order of the Alfvén

time Δ𝑡 ∼
𝜆∥

𝑉𝑎
∼

𝜆

𝑉𝑎

o One (weak) eddy interaction will lead to a variation Δ𝑢𝜆 ≪ 𝑢𝜆 in time Δt

Δ𝑢 ∼ Δ𝑡
𝑢𝜆
2

𝜆
∼
𝜆

𝑉𝑎

𝑢𝜆
2

𝜆

o The non-linear decay of the wave packets in such weak interactions can only occur after 

several interactions, 𝜏𝑁𝐿 ∼ 𝑁Δ𝑡



Iroshnikov-Kraichnan (1965)

o After N random collisions there is a cumulative change 
Δ𝑢

𝑢 𝑁

Δ𝑢𝜆,𝑁
𝑢𝜆

∼ 𝑁
Δ𝑢𝜆
𝑢𝜆

∼ 𝑁
𝜆

𝑉𝑎

𝑢𝜆
𝜆

o Thus, a number of collision 𝑁 ∼
𝑉𝑎

𝑢𝜆

2
is required to have a relative cumulative variation of 

velocity 
Δ𝑢

𝑢
∼ 1.

o The nonlinear time, is thus longer than Kolmogorov’s:

𝜏𝑁𝐿 ∼ 𝑁Δ𝑡 ∼
V𝑎

𝑢𝜆

2 𝜆

𝑉𝑎

o This longer nonlinear time leads to a different prediction for the energy:

𝐸 𝑘 ∼ 𝜀𝑣𝐴
1
2𝑘−3/2



Goldreich-Sridhar (1995) 

o The model of Goldreich-Sridhar was introduced to include anisotropy of the turbulent 

cascade. It is based on critical balance, 
𝜆⊥

𝑢𝜆
∼

𝜆∥

𝑣𝐴
, and on the strong turbulence condition 

so that 𝜏𝑁𝐿
± ∼ 𝜆⊥/𝑧

∓

o Under these assumptions one recovers the Kolmogorov scaling:

o Other anisotropic models by (Grappin et al. 2014; Boldyrev 2006, Ng & Bhattacharjee 

1997, Galtier et al. 2000)

o To what extent can we apply this phenomenology to solar wind turbulence?

𝐸 𝑘⊥ ∼ 𝑘⊥
−5/3

with 𝑘∥ ∼ 𝑘⊥

2

3 , 𝐸 𝑘∥ ∼ 𝑘∥
−2



Turbulence in the inner heliosphere with 

Parker Solar Probe

(Chen et al. ApJS 2020, Shi et al, 2021)



Magnetic field anisotropy

[Horbury et al. 2008]

Ulysses data in fast wind

• The turbulent cascade is 

anisotropic

• Observations seem to favor critical 

balance far from the sun and 𝑘⊥
−5/3

• However, shallower (𝐸 ∼ 𝑘⊥
−3/2

) 

spectra are also observed [Sioulas

et al 2023].



V & B spectra are different

Parker Solar Probe data

[Shi et al Apj 2021]

Wind data (1 AU)

[Podesta et al 2006 & C. Smith slides]



Two types of wind/two types of turbulence



Two types of wind/two types of turbulence

[D’amicis et al ApJ 2015]

𝜎𝑐

𝑉 (𝑘𝑚/𝑠)

𝜎𝑐 =
𝑧+

2
− 𝑧− 2

𝑧+ 2+ 𝑧− 2

• There is a “standard 

type of turbulence”, 

balanced 𝜎𝑐 ≈ 0

• And a highly imbalanced 

turbulence 𝜎𝑐 ≈ 11AU data



Turbulence in the inner heliosphere with 

Parker Solar Probe

• |δB|/B0~1

• δ|B|/B0<<1

• δB/√ρμ0~∓δV

• mainly propagating 

outward

• Developed spectrum

• δρ/ρ<<1



Alfvénic turbulence properties

[Matteini et al 2024]

• |δB|/B0~1

• δ|B|/B0<<1

• δB/√ρμ0~∓δV

• mainly propagating 

outward

• Developed spectrum

• δρ/ρ<<1



Waves and Turbulence in the Solar Wind: Why is it 

So Complicated?

convection reflection

nonlinearity

large scale coupling

dissipation

Both nonlinearities and expansion effects (inhomogeneity) are crucial

Also large scale shears in the wind can play a role



Challenges from PSP



Switchbacks 

(Dudok de Wit  ApJS 2020)

• Switchbacks are large amplitude Alfvénic fluctuations sometimes leading to a kink 

backwards of the magnetic field



Switchbacks

(Rouafi et al. Sp Sci Rev. 2023)

• The corresponding signature in velocity is a 

radial jet.

• In switchbacks, 𝑽 & 𝑩 are correlated like in 

Alfvén waves and 𝑩 2 ≃ 𝑐𝑜𝑛𝑠𝑡 => spherical 

polarization

• They are embedded in the flux of turbulent 

fluctuations



What is their origin and impacts in 

interplanetary turbulence?
• Related to coronal jets?

• Formed nonlinearly during evolution in heliosphere?

• Reconnection in the corona?

• What is their role in the turbulent cascade?

A product of reconnection 

(Drake et al. 2021; Zank et al 

2021.)

Induced by velocity shears (Landi et al. GRL 

2006; Ruffolo et al ApJS 2020; Schwadron et al 

2020, Toth et al 2023)

Induced by expansion (Squire et al. 2020; 

Mallet et al. 2021; Shoda et al. 2021)



Summary

• The solar wind is an excellent laboratory to study turbulence in magnetized plasmas 

• Turbulence can provide a mechanism to heat and accelerate the solar wind, as well as 

to heat the solar corona (wave-driven winds)

• Turbulence is indeed observed in-situ everywhere in the heliosphere

• While similar concept from hydrodynamic turbulence can be applied to the solar wind, 

the details still need to be framed in a coherent theory.

• Parker Solar Probe is giving us a glimpse of what the solar wind looks like closer to the 

sun, a lot of work is still needed to fully understand evolving waves and turbulence in 

the interplanetary space!



Thanks!
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