INTERSTELLAR

PROBE

Interstellar Probe: Humanity`s Journey to Interstellar Space Begins

Lecture at NASA Heliophysics Summer School, 25 June 2021

Elena Provornikova, P. C. Brandt, R. L. McNutt, Jr., J. Kinnison, K. Runyon, C. Lisse, A. Rymer, R. Stought, M.V. Paul and 476 experts and enthusiasts around the world

> The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA NASA Marshall Space Flight Center, SLS Office, Huntsville, AL, USA

Current understanding of the heliosphere

Unexpected discoveries that remain challenging to explain

- Voyager 1 and 2 are the only spacecraft to have traversed the Heliopause. With limited payload they left a range of mysteries.
- IBEX and Cassini have imaged the boundaries from inside and have brought the best global understanding to date, but still lack consistent interpretations
- SOHO, Ulyssses, New Horizons brought remote information on interstellar neutrals and their critical interaction with the heliosphere
- IMAP (launch 2025) will provide order-ofmagnitude better ENA imaging capabilities from 1 AU and guide further formulation of the Interstellar Probe Science Investigation

What is Interstellar Probe?

Achieving a Dream: A mission to the Interstellar Medium has been discussed since 1960

The First Step: Interstellar Probe is a mission concept through the boundaries of the heliosphere, in to the Local Interstellar Medium

Not A Starship: Uses available or near-term technologies to achieve asymptotic speeds larger than those of past missions

The Science: Our heliosphere as a habitable astrosphere, the unexplored interstellar medium beyond, and opportunities for planetary science and astrophysics

Paving the Way: Interstellar Probe paves the way scientifically, technically and programmatically for longer interstellar journeys that would require future propulsion systems

Interstellar Probe mission concept study

- 4-year study funded by NASA led by JHU APL and supported by more than 470 scientists, engineers and enthusiasts around the world
- "Pragmatic" mission concept
- Technology ready for launch by 2030
- Capability to operate and downlink out to 1000 AU
- Mission lifetime no less than 50 years
- "Menu" approach

The Team Journey

Interstellar Probe

Humanity's Exploration of Interstellar Space Begins

Astrophysics Supporting Goal Formation of Early Galaxies and Stars

Goal 1: Objective 1: A Heliosphere Shaped by the Sun

Unknown Global Structure

Processes Upholding the Heliosphere: gap in understanding the critical pick-up-ion population

Goal 1: Objective 1: A Heliosphere Shaped by the Sun

The Termination Shock: the largest shock in the heliosphere and not like others

Acceleration of Anomalous Cosmic Rays: still unsolved

Instabilities at the Heliopause and Magnetic Draping

McComas and Schwadron 2006

APL

Goal 1: Objective 2: A Variable Sun in a Changing Interstellar Environment

The Breathing Heliosphere Harboring a Variable Sun

McComas+2020

The Changing Heliosphere Through an Inhomogeneous ISM

Highly Dynamic Heliosheath

Large heliosphere in Local Bubble plasma

Washimi et al. 2011

,apl,

Goal 1: Objective 2: A Variable Sun in a Changing Interstellar Environment

Connecting the dynamic Sun with shocks in the interstellar medium

. How far does the influence of our Sun extends into the interstellar space?

Goal 1: Objective 3: Into the Unknown Local Interstellar Cloud

The first direct sampling of density, temperature, ionization, state, composition and fields beyond the heliopause would provide decisive information on the heliospheric interaction, and also on the chemical evolution of the galaxy.

Goal 1: Objective 3: Into the Unknown Local Interstellar Cloud

Hydrogen Wall: Discovered remotely but unexplored

Interstellar Dust: disconnect between ISM dust measurements from remote sensing and in-situ measurements

New Galactic Cosmic Ray science: sources and origin of GCRs <1 GeV

Unique Opportunities for Planetary Science and Astrophysics

Discovery of the solar dust disk is critical for understanding the evolution of planetary systems.

Notional Operations Scenario Driving Mission Architecture Designs

<u>Baseline Scenario</u>

(concluding now)

- Spin stabilized
 SDm BWS wing apter
- 50m PWS wire antennas

Inner Heliosphere Phase 1-90 AU

- In-situ measurements of magnetic fields, solar wind and PUI
- ENA and Ly-a imaging from a changing vantage point
- PWS observations of 2.5 kHz emission

Heliosheath Phase 90-120 AU

In-situ measurements through

boundary region

- ENA and LYA imaging
- PWS Observations

Interstellar Phase

>120 AU

- In-situ measurements of ISM gas, neutrals and dust
- External ENA and Ly- α imaging
 - In-situ measurements of ribbon

Baseline: Goal 1 (Primary)

Goal	Science Objectives	Specific Questions	Measurement Objectives	Measurements (Supporting)	Mission Requirements
ne in	Physical	Global Structure; Force Balance	In-situ particle spectra and fields across HS and into LISM, flows; Remote wave, Ly-a and ENA imaging.	MAG, PLS, PUI, EPS, CRS, ENA, PWS, LYA	Spinning; imaging from ~250 AU
Han	, Processes and	Ribbon/Belt	ENA imaging; In-situ within ribbon.	ena, pls	Spinning; trajectory through ribbon to ~300 AU
d in its	Global Manifestation	ACRs, shocks, reconnection, TS, HP	Fields, e/ion plasma to ACRs across TS, HS; Fields, waves, particle spectra for HP instabilities	MAG, PLS, PUI, EPS, CRS, PWS	Spinning; through HP ~130 AU; spend sufficient time in HS
e au		Neutrals in the Heliosphere	LOS velocity and temperature of H	lya, nms	Through HP ~130 AU
opsher xy		Solar Wind Effects on the Boundary	In-situ ~day variations in HS; ENA and wave variations remotely	MAG, PLS, PUI, EPS, CRS, ENA, PWS	Spinning; spend sufficient time in HS
le Astri ie Gala:	Uynamics and Evolution	Shock Propagation and Turbulence	Fields, e/ion plasma to GCR anisotropies; fields turbulent spectra Earth to LISM	MAG, PLS, PUI, EPS, CRS, PWS	Spinning; sufficient time beyond HP out to ~400 AU
itab tł		GCR Modulation/Shielding	GCR e/ion composition, fields out to LISM	MAG, CRS	Spinning; sufficient time beyond HP out to ~400 AU
Hab		Nature of Bow Shock	re of Bow Shock In-situ fields, plasma, PUI for sound speed	MAG, PLS, PUI	Spinning; ≤300 AU
and Dur	Properties of	Hydrogen Wall	LOS H; In-situ H and composition	lya, nms	≥300 AU
		Neutrals/Dust Filtration	In-situ elemental and isotopic out to LISM	NMS, IDA	~400 AU
erst	VI ISM	LISM gas and plasma	Density, temp., composition, ionization	MAG, PLS, NMS	Spinning; ~400 AU
Unde		LISM Inhomogeneities	Variability of properties on 100's AU	MAG, PLS, NMS	Spinning; ~400 AU
		Origin of GCRs	Elemental/isotopic abundances, spectra	MAG, CRS	Spinning; sufficient time beyond HP

EPS	Energetic Pa
CRS	Cosmic Rav

Plasma Wave System PWS ENA Energetic Neutral Atoms IDA IDC

Interstellar Dust Analyzer Interstellar Dust Counter

Neutral Mass Spectrometer. Ly-Alpha Spectrograp

NMS

LYA

APL interstellarprobe.jhuapl.edu

ometer

Plasma System

MAG

PLS

June 25, 2021 **18**

Example Model Payloads

Heliophysics Baseline 87.4 kg 86.7 Ŵ \blacksquare Charged Particles \blacksquare Fields and Waves ENA Imaging 🗖 Dust Neutrals Ly-alpha 15% 12% 15% 14%

Instrument (Heritage)	Measurement Requireme	nts	Mission Requirements	Science Driver
Magnetometer (MAG) (MMS/DFG)	0.01 - 100 nT; 0.01 nT (10 ⁻⁸ nT ² /Hz turb.)	≤60 s; (100 Hz)	Two FG, 10m boom	LISM (turbulence)
Plasma Waves (PWS) (Van Allen/EFW)	~1 Hz − 1 MHz; Δf/f≤4% ≤0.7 μV/m @ 3 kHz	≤60 s (≤ 4 s at TS)	4x50 m wire; spin plane	LISM n _e , T _e (QTN), turbulence
Plasma Subsystem (PLS) (PSP/SWEAP/SPAN-A)	~eV to 10's keV e, H+, He+, C+, N-0+	~4π; ≤60 s	Spinning	Flows, n _e , T _e , n _i , T _i Force balance
Pick-up Ions (PUI) (Ulysses/SWICS)	0.5-78 keV/q H, ³ He, ⁴ He, C, ¹⁴ N, ¹⁶ 0, ²⁰ Ne, ²² Ne, Mg, Si, Fe (charge states)	iFOV: 60°	Spinning	Interstellar, inner PUI Force balance
Energetic Particles (EPS) (PSP/EPI-Lo)	10's keV – 1's MeV H, ³ He, ⁴ He, C, O, Ne, Mg, Si, Fe (Li/BeB)	~4π; ≤60 s	Spinning	S/W, HS and ACRs Force balance
Cosmic Rays (CRS) (PSP/EPI-Hi, new development)	H to Sn; ≤1 GeV/nuc; ∆m= 1 amu electrons; ≤10 MeV	≥2 directions; daily	Spinning	ACRs, GCRs LiBeB cosmic story
Interstellar Dust Analyzer (IDA) (IMAP/IDEX, new development)	1-500 amu; m/∆m: ≥ 200	iFOV: 90°	Ram direction Co-boresighted NMS	ISDs, galactic heavy ion composition
Neutral Mass Spectrometer (NMS) (LunaResurs/NGMS, JUICE/NMS)	H to Fe, m/Δm > 100 (1σ) 1 – 300 u∕e	iFOV: 10°; weekly	Ram direction Co-boresighted IDA	LISM composition
ENA (ENA) (IMAP/Ultra, new development)	~1-100 keV; H (He, O goal)	iFOV: 170° x 90°	Spinning, 2 heads	Shape, force balance, ribbon/belt
Lyman-Alpha Spectrograph (LYA) (MAVEN/IUVS, new development)	120-130 nm; 0.004nm	iFOV: 5°; 140° manthly	Spinning	LISM and helioslicath H

APL

Example Accommodation Baseline: Snapshot (not all completed yet)

Concluding Remarks

- Join the team at interstellarprobe.jhuapl.edu
- Student Program is under development
- White Papers for the Heliophysics Decadal
- https://www.lpi.usra.edu/decadal_whitepaper_proposals/heliophysics/

Gravity Assist here

To join the journey: interstellarprobe.jhuapl.edu

APL

Question and Answer Session

Interstellar Probe Study Website http://interstellarprobe.jhuapl.edu

Baseline Trajectory

	PoweredEB Speed Map [C2 - 202.01 km2/s2] for KBO dates 2020.2042
90	Powereur bispeed map [CS = 203.31 kill /8] for Kb0 dates 2030/2042
75	
60	
45	90° from nose
30	Salacia 2002TC602 2014YX49* Makemake Haumea Barnards Star Varda
(Ren) 15	2005TN53* Varuna 2000C0105 1996G021 0 Huya 2002W54 Notes 0 Jacour
0	Uran 28950H181 2810ER65 Deucellon O 2007OR10 Neptune 3 AU/Mpo 2018VG18 2013F528 Deucellon 2013F528 Deucellon 2007OR10
-15	Eris Sedna 2004XR190 2011QF99* 2014F72 2014F72 2014SV349
-30	Epsilon Eridani
-45	Proxima Centauri
-60	Optimized Example Baseline Direction
-75	2031 2032 20 20 2030 2030 2030 2040 2030
-90 []] 0	30 60 90 120 150 180 210 240 270 300 330 360 Ecliptic Longitude (deg)

Direction	Heliophysics Trades
~45° off nose	 Through ribbon (~285° ELON) Good for imaging from outside Good for ISD
Nose	 Fast way to LISM Stagnation, high-pressure region, force balance Good for ISD Not through max ribbon Not optimal for imaging from outside
Flank (~90°)	 HP data point important for shape ACR acceleration May be longer to reach LISM Not in the ribbon Dust duty cycle limited
~135° off Nose	 Problematic for dust Sufficiently close to the direction of CMA Maximum outbound speed area
Tailward	 Problematic for dust Sufficiently close to the direction of CMA
Off Ecliptic (U/N)	 Jets, turbulence Towards EUV ionizing stars (CMA)