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Magnetic fields in the Universe

e Earth
o Magnetic field present for ~ 3.5 - 10° years, much longer than
Ohmic decay time (~ 10% years)
o Strong variability on shorter time scales (103 years)
@ Planets: Mercury, Jupiter, Saturn, Uranus, Neptune have
large scale fields
@ Sun

o Magnetic fields from smallest observable scales to size of sun
e 11 year cycle of large scale field
o Ohmic decay time ~ 109 years (in absence of turbulence)
@ Other stars
e Stars with outer convection zone: similar to sun
e Stars with outer radiation zone: most likely primordial fields
e Galaxies

o Field structure coupled to observed matter distribution (e.g.
spirals)
o Isit primordial?



Why is the Universe magnetized?

D. Longcope lecture: Dynamo has 3 fundamental features:
- Electrically conducting fluid
- Fluid must have complex motions

- Motions must be vigorous enough (as measured by the
Magnetic Reynolds number Rm = velocity x
size/resistivity)

Toy example: Homopolar Dynamo

References for this lecture:

Heliophysics, Vol. 1, Chapter 3: M. Rempel
Heliophysics, Vol. 3, Chapter 6: P. Charbonneau
Heliophysics, Vol. 4, Chapter 6: S. Stanley



MHD equations

The full set of MHD equations combines the induction equation
with the Navier-Stokes equations including the Lorentz-force:
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Assumptions:

e Validity of continuum approximation (enough particles to
define averages)

e Non-relativistic motions, low frequencies



Viscous stress tensor 7

1/ 0vi Ov
Aie = 5(8xk+€)x,->

1.
Tik = 2QI/ (Aik — §Oikv s V)
Ql/ — Tik/\ik ’

Ohmic dissipation @,

7
Q, = —(V x B)?.
o

Equation of state
oe

-

~—1
/

v, n and k: viscosity, magnetic diffusivity and thermal conductivity
[to denotes the permeability of vacuum
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Induction equation

Using Ampere's law V x B = ] yields for the electric field in the
laboratory frame
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Advection, diffusion, magnetic Reynolds number

L: typical length scale U: typical velocity scale L/U: time unit
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with the magnetic Reynolds number
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Rm < 1: diffusion dominated regime
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Only decaying solutions with decay (diffusion) time scale
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Advection, diffusion, magnetic Reynolds number

Rm > 1 advection dominated regime (ideal MHD)
— =V x (v x B)

Equivalent expression
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@ advection of magnetic field
@ amplif

e amplification through compression



Motivation

Dynamos:

e For v = 0 magnetic field decays on timescale 74 ~ L%/
e Earth and other planets:

@ Sun

Evidence for magnetic field on earth for 3.5 - 10° years while
T4 ~ 10% years

Permanent rock magnetism not possible since T > Tcurie and
field highly variable — field must be maintained by active
process

and other stars:

o Evidence for solar magnetic field for ~ 300000 years (1°Be)
o Most solar-like stars show magnetic activity independent of age
e Indirect evidence for stellar magnetic fields over life time of

stars

But 74 ~ 10° years!

Primordial field could have survived in radiative interior of sun,
but convection zone has much shorter diffusion time scale

~ 10 years (turbulent diffusivity)



Advection, diffusion, magnetic Reynolds number

Object n[m?/s] Llm] U[m/s] Rm 74

earth (outer core) 2 107 a0 300 10%years
sun (plasma conductivity) 1 10° 100 101%  10° years
sun (turbulent conductivity) 108 108 100 100 3years
liquid sodium lab experiment 0.1 1 10 100 10s



Mathematical definition of dynamo

S bounded volume with the surface 95, B maintained by currents
contained within S, B ~ r—3 asymptotically,
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Vix H = 8 outside S
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v is a dynamo if an initial condition B = By exists so that
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Large scale/small scale dynamos

Decompose the magnetic field into large scale part and small scale
part (energy carrying scale of turbulence) B = B + B":

1 on
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o Small scale dynamo: B” <« B’

e Large scale dynamo: B’ > B’

Almost all turbulent (chaotic) velocity fields are small scale
dynamos for sufficiently large R, large scale dynamos require
additional large scale symmetries (see second half of this lecture)



What means large/small in practice (Sun)?

Figure: Full disk magnetogram SDO/HMI







Large scale/small scale dynamos

— D
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@ Amplification through field line stretching
e Twist-fold required to repack field into original volume

e Magnetic diffusivity allows for change of topology




What is Magnetic Reconnection?

If a plasma is perfectly conducting, that is, it obeys
the ideal Ohm’s law,

E+vxB=0(
B-lines are frozen in the plasma, and no reconnection

OCCUrs. : \ ;- \; \ ;

Fig. 1.6. Magnetic flux conservation: if a curve C; is distorted into C2 by plasma
motion, the flux through C; at t; equals the flux h ough C2 at ta.



What is magnetic reconnection? (continued)

Departures from ideal behavior, represented by
E+vxB/c=R. VxR=(

break ideal topological invariants, allowing field lines to
reconnect.

In the generalized Ohm'’s law for weakly collisional or
collisionless plasmas, R contains resistivity, Hall current,
electron inertia and pressure.
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The thin current sheet is explosively stable
over a critical Lundquist number, forming,
ejecting, and coalescing a hierarchy of
plasmoids.
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Slow/fast dynamos

Influence of magnetic diffusivity on growth rate

e Fast dynamo: growth rate independent of R,
(stretch-twist-fold mechanism)

@ Slow dynamo: growth rate limited by resistivity
(stretch-reconnect-repack)

e Fast dynamos relevant for most astrophysical objects since
R 1

@ Dynamos including (resistive) reconnection steps can be fast
provided the reconnection is fast



Solar structure (5 > 1)
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Outer convective zone: vital for solar dynamo




Differential rotation and meridional flow

Induction effects of axisymmetric flows on axisymmetric field:

B = Be¢ +V x(Aeo)
V = Ve, + vgeg + (2rsinfeg

Differential rotation most dominant shear flow in stellar convection
Zones:
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Meridional flow by-product of DR, observed as poleward surface flow



Differential rotation and meridional flow

Spherical geometry:
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@ Meridional flow: Independent advection of poloidal and
toroidal field

@ Differential rotation: Source for toroidal field (if poloidal field
not zero)

e Diffusion: Sink for poloidal and toroidal field

@ No term capable of maintaining poloidal field against Ohmic
decay!



Cowling's anti-dynamo theorem

A stationary axisymmetric magnetic field with currents limited to a
finite volume in space cannot be maintained by a velocity field with

finite amplitude.

Ohm's law of the form j = oE only decaying solutions, focus here
on j=o(v x B).

On O-type neutral line By is zero, but pj, = V x Bp has finite
value, but cannot be maintained by (v x B); = (vp x Bp).



Large scale dynamo theory

Some history:

@ 1919 Sir Joeseph Larmor: Solar magnetic field maintained by
motions of conducting fluid?

@ 1937 Cowling's anti-dynamo theorem and many others

@ 1955 Parker: decomposition of field in axisymmetric and
non-axisymmetric parts, average over induction effects of
non-axisymmetric field

@ 1964 Braginskii, Steenbeck, Krause: Mathematical frame
work of mean field theory developed

@ last 3 decades 3D dynamo simulations



Meanfield induction equation

Average of induction equation:
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New term resulting from small scale effects:

E=v xB

Fluctuating part of induction equation:

0
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Kinematic approach: v/ assumed to be given

@ Solve for B’, compute v/ x B’ and solve for B

o Term v/ x B' — v/ x B’ leading to higher order correlations
(closure problem)



Mean field expansion of turbulent induction effects

Exact expressions for £ exist only under strong simplifying
assumptions (see homework assignment).

In general € is a linear functional of B:
E;(x; £) = / d3x’/ dt Kibx, t; %, E) Bi{x; T) -

Can be simplified if a sufficient scale separation is present:
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Symmetry constraints

Decomposing aj; and BEJ-/E)X;( into symmetric and antisymmetric

components:
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Symmetry constraints

Overall result:

E=aB+yxB-BV xB-6x(VxB)+...

With:
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Simplified expressions

Assuming |B’| < |B| in derivation + additional simplification for
(quasi) isotropic, non-mirror symmetric, (weakly) inhomogeneous

turbulence:

dyd £ o — oe s — as
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Leads to:
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Expressions are independent of 7 (in this approximation): fast dynamo



Kinematic a-effect

o= —%Tc vV - (V xVv')  Hg=v-(V x V) kinetic helicity

Requires rotation + additional preferred direction (stratification)
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@ Dimensionless measure for strength of €2- and a-effect
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@ Dynamo excited if dynamo number

D = DQDa > Dcrit
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Non-kinematic effects

Proper way to treat them: 3D simulations
e Still very challenging
@ Has been successful for geodynamo, but not for solar dynamo

Semi-analytical treatment of Lorentz-force feedback in mean field
models:

@ Macroscopic feedback: Change of the mean flow (differential
rotation, meridional flow) through the mean Lorentz-force

f=jxB+7xB

@ Mean field model including mean field representation of full
MHD equations

@ Microscopic feedback: Change of turbulent induction effects
(e.g. a-quenching)



Microscopic feedback

Symmetry of momentum and induction equation v/ < B’/ /ngo:

dv i
= = — B WVIB ... .
= ,LtoQ( )
dB’ .
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E = vxB

Strongly motivates magnetic term for a-effect (Pouquet et al.

1976): g
o = §7'C (E j/ : B, — )




Challenges to Kinematic Mean-Field Dynamo
Theory

* Smallest scales grows most rapidly (Kulsrud and Anderson 1972,
Boldyrev et al. 2005)

* Due to constraints of magnetic helicity conservation, small-scale
fields act back to decrease the large-scale field growth
drastically---the problem of “catastrophic quenching” (Gruzinov
and Diamond 1994, Cattaneo and Hughes 2009). But this
challenge could be addressed by transporting helicity (Blackman
and Field 2002, Subramanian and Brandenburg 2004, Ebrahimi
and B. 2014, Tobias and Cattaneo 2014)

At even moderate Rm, the fast-growing small-scale dynamo
implies that velocity fluctuations should always be accompanied
by magnetic field fluctuations of a similar magnitude
(Schekochihin et al. 2004), questioning the relevance of the
classical kinematic theory.



Accretion Disks near a Black Hole




Preliminary — local MR

Modified from Jacob Simon's webpage

Compressible MHD Compressible local Incompressible local
equations MHD equations MHD equations

The simplest relevant system exhibiting MRI turbulence is the local
incompressible MHD equations — remove global curvature

In the shearing box, boundary conditions are periodic in y (azimuthal)
and z (vertical), and shearing periodic in x (radial).




# WVe use the horizontal average for the mean-field average.

B (z,t)

By(z, t) T
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» Study the dynamo by studying £(B,U).




PRIMARY RESULT

New dynamo mechanism
— the magnetic shear-current effect —
small-scale magnetic fields have a positive effect on
the large-scale dynamo.

Effect requires velocity shear (e.g., Keplerian).

No a effect required.

Off-diagonal component of f couples with the shear.

Squire & Bhattacharnjee PRL (2015) Squire & Bhattacharjee Apf (2015) Squire & Bhattacharjee PRE (2015)
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The magnetic shear-current effect
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Squire and Bhattacharjee 2016




Fast growth of small-
scale dynamo,

saturates t~40.

Large-scale dynamo
driven by small-scale
b fluctuations?

Large-scale dynamo
saturates — change

in n?

Keplerian



= Magnetic shear-current effect is like inverse quenching —
small-scale dynamo can drive a large-scale dynamo.

Agreement between simulation and analytic results.

m Good evidence that magnetic shear-current effect is
responsible for unstratified MRI dynamo (Shi, Stone, and Huang
2016)

Shear flows being ubiquitous, is the magnetic shear-
current effect important for the Sun? (Hotta,

Rempel, and Yokoyama, 2016)




